311 research outputs found

    Geologic and Structural Evolution of the NE Lau Basin, Tonga: Morphotectonic Analysis and Classification of Structures Using Shallow Seismicity

    Get PDF
    The transition from subduction to transform motion along horizontal terminations of trenches is associated with tearing of the subducting slab and strike-slip tectonics in the overriding plate. One prominent example is the northern Tonga subduction zone, where abundant strike-slip faulting in the NE Lau back-arc basin is associated with transform motion along the northern plate boundary and asymmetric slab rollback. Here, we address the fundamental question: how does this subduction-transform motion influence the structural and magmatic evolution of the back-arc region? To answer this, we undertake the first comprehensive study of the geology and geodynamics of this region through analyses of morphotectonics (remote-predictive geologic mapping) and fault kinematics interpreted from ship-based multibeam bathymetry and Centroid-Moment Tensor data. Our results highlight two unique features of the NE Lau Basin: (1) the occurrence of widely distributed off-axis volcanism, in contrast to typical ridge-centered back-arc volcanism, and (2) fault kinematics dominated by shallow-crustal strike slip-faulting (rather than normal faulting) extending over ~120 km from the transform boundary. The orientations of these strike-slip faults are consistent with reactivation of earlier-formed normal faults in a sinistral megashear zone. Notably, two distinct sets of Riedel megashears are identified, indicating a recent counter-clockwise rotation of part of the stress field in the back-arc region closest to the arc. Importantly, these structures directly control the development of complex volcanic-compositional provinces, which are characterized by variably-oriented spreading centers, off-axis volcanic ridges, extensive lava flows, and point-source rear-arc volcanoes that sample a heterogenous mantle wedge, with sharp gradients and contrasts in composition and magmatic affinity. This study adds to our understanding of the geologic and structural evolution of modern backarc systems, including the association between subduction-transform motions and the siting and style of seafloor volcanism

    A Recent Volcanic Eruption Discovered on the Central Mariana Back-Arc Spreading Center

    Get PDF
    Submarine volcanic eruptions are difficult to detect because they are hidden from view at the bottom of the ocean and far from land-based sensors. However, most of Earthā€™s volcanic activity is in the oceans along tectonic plate boundaries, and modern tools of oceanography now allow us to find and study recent eruptions in the deep sea. The first known historical eruption on the Mariana back-arc spreading center was discovered in December 2015 during exploration of the southern back-arc for new hydrothermal vent sites. A water-column survey along the axis of the back-arc showed hydrothermal plumes over the site characterized by low particle concentrations and relatively high reduced chemical anomalies. A dive with the autonomous underwater vehicle Sentry collected high-resolution (1 m) multibeam sonar bathymetry over the site, followed by a near-bottom photographic survey of a smaller area. The photo survey revealed the presence of a pristine, dark, glassy lava flow on the seafloor with no sediment cover. Venting of milky hydrothermal fluid indicated that the lava flow was still warm and therefore very young. A comparison of multibeam sonar bathymetry collected by R/V Falkor in December 2015, to the most recent previous survey of the area by R/V Melville in February 2013, revealed large depth changes in the same area, effectively bracketing the timing of the eruption within a window of less than 3 years. The bathymetric comparison shows the eruption produced a string of lava flows with maximum thicknesses of 40ā€“138 m along a distance of 7.3 km (from latitude 15āˆ˜22.3ā€² to 15āˆ˜26.3ā€²N) between depths of 4050ā€“4450 m bsl (meters below sea level), making this the deepest known historical submarine volcanic eruption on Earth. The cross-axis width of the lava flows is 200ā€“800 m. The Sentry bathymetry shows that the new lava flows are constructed of steep-sided hummocky pillow mounds and are surrounded by older flows with similar morphology. In April and December 2016, two dives were made on the new lava flows by remotely operated vehicles Deep Discoverer and SuBastian. The pillow lavas have many small glassy buds on the steep flanks of the mounds, locally thick accumulations of hydrothermal sediment near the tops of mounds, and small cones of radiating pillows at their summits. The 2015ā€“2016 observations show a rapidly declining hydrothermal system on the lava flows, suggesting that the eruption had occurred only months before its discovery in December 2015. The morphology of the pillow lavas is similar to other historical eruption sites, so the greater depth and ambient pressure of this site had no apparent effect on the processes of lava extrusion and emplacement. This study reveals that some segments of the Mariana back-arc have active magmatic systems despite the relatively low spreading rate, and that other eruptions are possible in the near future

    Mineralization and Alteration of a Modern Seafloor Massive Sulfide Deposit Hosted in Mafic Volcaniclastic Rocks

    Get PDF
    Tinakula is the first seafloor massive sulfide deposit described in the Jean Charcot troughs and is the first such deposit described in the Solomon Islandsā€”on land or the seabed. The deposit is hosted by mafic (basaltic-andesitic) volcaniclastic rocks within a series of cinder cones along a single eruptive fissure. Extensive mapping and sampling by remotely operated vehicle, together with shallow drilling, provide insights into deposit geology and especially hydrothermal processes operating in the shallow subsurface. On the seafloor, mostly inactive chimneys and mounds cover an area of ~77,000 m2 and are partially buried by volcaniclastic sand. Mineralization is characterized by abundant barite- and sulfide-rich chimneys that formed by low-temperature (<250Ā°C) venting over ~5,600 years. Barite-rich samples have high SiO2, Pb, and Hg contents; the sulfide chimneys are dominated by low-Fe sphalerite and are high in Cd, Ge, Sb, and Ag. Few high-temperature chimneys, including zoned chalcopyrite-sphalerite samples and rare massive chalcopyrite, are rich in As, Mo, In, and Au (up to 9.26 ppm), locally as visible gold. Below the seafloor, the mineralization includes buried intervals of sulfide-rich talus with disseminated sulfides in volcaniclastic rocks consisting mainly of lapillistone with minor tuffaceous beds and autobreccias. The volcaniclastic rocks are intensely altered and variably cemented by anhydrite with crosscutting sulfate (Ā± minor sulfide) veins. Fluid inclusions in anhydrite and sphalerite from the footwall (to 19.3 m below seafloor; m b.s.f.) have trapping temperatures of up to 298Ā°C with salinities close to, but slightly higher than, that of seawater (2.8ā€“4.5 wt % NaCl equiv). These temperatures are 10Ā° to 20Ā°C lower than the minimum temperature of boiling at this depth (1,070ā€“1,204 m below sea level; m b.s.l.), suggesting that the highest-temperature fluids boiled below the seafloor. The alteration is distributed in broadly conformable zones, expressed in order of increasing depth and temperature as (1) montmorillonite/nontronite, (2) nontronite + corrensite, (3) illite/smectite + pyrite, (4) illite/smectite + chamosite, and (5) chamosite + corrensite. Zones of argillic alteration are distinguished from chloritic alteration by large positive mass changes in K2O (enriched in illite/smectite), MgO (enriched in chamosite and corrensite), and Fe2O3 (enriched in pyrite associated with illite/smectite alteration). The Ī“18O and Ī“D values of clay minerals confirm increasing temperature with depth, from 124Ā° to 256Ā°C, and interaction with seawater-dominated hydrothermal fluids at high water/rock ratios. Leaching of the volcanic host rocks and thermochemical reduction of seawater sulfate are the primary sources of sulfur, with Ī“34S values of sulfides, from ā€“0.8 to 3.4ā€°, and those of sulfate minerals close to seawater sulfate, from 19.3 to 22.5ā€°

    Conceptualizing Ecological Responses to Dam Removal: If You Remove It, Whatā€™s to Come?

    Get PDF
    One of the desired outcomes of dam decommissioning and removal is the recovery of aquatic and riparian ecosystems. To investigate this common objective, we synthesized information from empirical studies and ecological theory into conceptual models that depict key physical and biological links driving ecological responses to removing dams. We define models for three distinct spatial domains: upstream of the former reservoir, within the reservoir, and downstream of the removed dam. Emerging from these models are response trajectories that clarify potential pathways of ecological transitions in each domain. We illustrate that the responses are controlled by multiple causal pathways and feedback loops among physical and biological components of the ecosystem, creating recovery trajectories that are dynamic and nonlinear. In most cases, short-term effects are typically followed by longer-term responses that bring ecosystems to new and frequently predictable ecological condition, which may or may not be similar to what existed prior to impoundment

    Improved quality control processing of peptide-centric LC-MS proteomics data

    Get PDF
    Motivation: In the analysis of differential peptide peak intensities (i.e. abundance measures), LC-MS analyses with poor quality peptide abundance data can bias downstream statistical analyses and hence the biological interpretation for an otherwise high-quality dataset. Although considerable effort has been placed on assuring the quality of the peptide identification with respect to spectral processing, to date quality assessment of the subsequent peptide abundance data matrix has been limited to a subjective visual inspection of run-by-run correlation or individual peptide components. Identifying statistical outliers is a critical step in the processing of proteomics data as many of the downstream statistical analyses [e.g. analysis of variance (ANOVA)] rely upon accurate estimates of sample variance, and their results are influenced by extreme values

    Regional Chemotherapy in Locally Advanced Pancreatic Cancer: RECLAP Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is the fourth leading cause of cancer death in the United States. Surgery offers the only chance for cure. However, less than twenty percent of patients are considered operative candidates at the time of diagnosis. A common reason for being classified as unresectable is advanced loco-regional disease.</p> <p>A review of the literature indicates that almost nine hundred patients with pancreatic cancer have received regional chemotherapy in the last 15 years. Phase I studies have shown regional administration of chemotherapy to be safe. The average reported response rate was approximately 26%. The average 1-year survival was 39%, with an average median survival of 9 months. Of the patients that experienced a radiographic response to therapy, 78 (78/277, 28%) patients underwent exploratory surgery following regional chemotherapy administration; thirty-two (41%) of those patients were amenable to pancreatectomy. None of the studies performed analyses to identify factors predicting response to regional chemotherapy.</p> <p>Progressive surgical techniques combined with current neoadjuvant chemoradiotherapy strategies have already yielded emerging support for a multimodality approach to treatment of advanced pancreatic cancer.</p> <p>Intravenous gemcitabine is the current standard treatment of pancreatic cancer. However, >90% of the drug is secreted unchanged affecting toxicity but not the cancer per se. Gemcitabine is converted inside the cell into its active drug form in a rate limiting reaction. We hypothesize that neoadjuvant regional chemotherapy with continuous infusion of gemcitabine will be well tolerated and may improve resectability rates in cases of locally advanced pancreatic cancer.</p> <p>Design</p> <p>This is a phase I study designed to evaluate the feasibility and toxicity of super-selective intra-arterial administration of gemcitabine in patients with locally advanced, unresectable pancreatic adenocarcinoma. Patients considered unresectable due to locally advanced pancreatic cancer will receive super-selective arterial infusion of gemcitabine over 24 hours via subcutaneous indwelling port. Three to six patients will be enrolled per dose cohort, with seven cohorts, plus an additional six patients at the maximum tolerated dose; accrual is expected to last 36 months. Secondary objectives will include the determination of progression free and overall survival, as well as the conversion rate from unresectable to potentially resectable pancreatic cancer.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov ID: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01294358">NCT01294358</a></p

    A new geological map of the Lau Basin (southwestern Pacific Ocean) reveals crustal growth processes in arc-backarc systems

    Get PDF
    A 1:1,000,000-scale lithostratigraphic assemblage map of the Lau Basin (southwestern Pacific Ocean) has been created using remote predictive mapping (RPM) techniques developed by geological surveys on land. Formation-level geological units were identified in training sets at scales of 1:100,000ā€“1:200,000 in different parts of the basin and then extrapolated to the areas where geological data are sparse. The final compilation is presented together with a quantitative analysis of assemblage-level crustal growth based on area-age relationships of the assigned units. The data sets used to develop mapping criteria and an internally consistent legend for the compilation included high-resolution ship-based multibeam, satellite- and ship-based gravity, magnetics, seafloor imaging, and sampling data. The correlation of units was informed by published geochronological information and kinematic models of basin opening. The map covers >1,000,000 km2 of the Lau-Tonga arc-backarc system, subdivided into nine assemblage types: forearc crust (9% by area), crust of the active volcanic arc (7%), backarc rifts and spreading centers (20%), transitional arc-backarc crust (13%), relict arc crust (38%), relict backarc crust (8%), and undivided arc-backarc assemblages (<5%), plus oceanic assemblages, intraplate volcanoes, and carbonate platforms. Major differences in the proportions of assemblage types compared to other intraoceanic subduction systems (e.g., Mariana backarc, North Fiji Basin) underscore the complex geological makeup of the Lau Basin. Backarc crust formed and is forming simultaneously at 12 different locations in the basin in response to widely distributed extension, and this is considered to be a dominant pattern of crustal accretion in large arc-backarc systems. Accelerated basin opening and a microplate breakout north of the Peggy Ridge has been accommodated by seven different spreading centers. The result is an intricate mosaic of small intact assemblages in the north of the basin, compared to fewer and larger assemblages in the south. Although the oldest rocks are Eocene (~40 m.y. old basement of the Lau and Tonga Ridges), half of the backarc crust in the map area formed within the last 3 m.y. and therefore represents some of the fastest growing crust on Earth, associated with prolific magmatic and hydro-thermal activity. These observations provide important clues to the geological evolution and makeup of ancient backarc basins and to processes of crustal growth that ultimately lead to the emergence of continents

    Pertussis-Associated Pneumonia in Infants and Children From Low- and Middle-Income Countries Participating in the PERCH Study.

    Get PDF
    BACKGROUND: ā€ƒFew data exist describing pertussis epidemiology among infants and children in low- and middle-income countries to guide preventive strategies. METHODS: ā€ƒChildren 1-59 months of age hospitalized with World Health Organization-defined severe or very severe pneumonia in 7 African and Asian countries and similarly aged community controls were enrolled in the Pneumonia Etiology Research for Child Health study. They underwent a standardized clinical evaluation and provided nasopharyngeal and oropharyngeal swabs and induced sputum (cases only) for Bordetella pertussis polymerase chain reaction. Risk factors and pertussis-associated clinical findings were identified. RESULTS: ā€ƒBordetella pertussis was detected in 53 of 4200 (1.3%) cases and 11 of 5196 (0.2%) controls. In the age stratum 1-5 months, 40 (2.3% of 1721) cases were positive, all from African sites, as were 8 (0.5% of 1617) controls. Pertussis-positive African cases 1-5 months old, compared to controls, were more often human immunodeficiency virus (HIV) uninfected-exposed (adjusted odds ratio [aOR], 2.2), unvaccinated (aOR, 3.7), underweight (aOR, 6.3), and too young to be immunized (aOR, 16.1) (all P ā‰¤ .05). Compared with pertussis-negative African cases in this age group, pertussis-positive cases were younger, more likely to vomit (aOR, 2.6), to cough ā‰„14 days (aOR, 6.3), to have leukocyte counts >20 000 cells/ĀµL (aOR, 4.6), and to have lymphocyte counts >10 000 cells/ĀµL (aOR, 7.2) (all P ā‰¤ .05). The case fatality ratio of pertussis-infected pneumonia cases 1-5 months of age was 12.5% (95% confidence interval, 4.2%-26.8%; 5/40); pertussis was identified in 3.7% of 137 in-hospital deaths among African cases in this age group. CONCLUSIONS: ā€ƒIn the postneonatal period, pertussis causes a small fraction of hospitalized pneumonia cases and deaths; however, case fatality is substantial. The propensity to infect unvaccinated infants and those at risk for insufficient immunity (too young to be vaccinated, premature, HIV-infected/exposed) suggests that the role for maternal vaccination should be considered along with efforts to reduce exposure to risk factors and to optimize childhood pertussis vaccination coverage
    • ā€¦
    corecore