472 research outputs found

    A proposal for Marchenko-based target-oriented full waveform inversion

    Full text link
    The Hessian matrix plays an important role in correct interpretation of the multiple scattered wave fields inside the FWI frame work. Due to the high computational costs, the computation of the Hessian matrix is not feasible. Consequently, FWI produces overburden related artifacts inside the target zone model, due to the lack of the exact Hessian matrix. We have shown here that Marchenko-based target-oriented Full Waveform Inversion can compensate the need of Hessian matrix inversion by reducing the non-linearity due to overburden effects. This is achieved by exploiting Marchenko-based target replacement to remove the overburden response and its interactions with the target zone from residuals and inserting the response of the updated target zone into the response of the entire medium. We have also shown that this method is more robust with respect to prior information than the standard gradient FWI. Similarly to standard Marchenko imaging, the proposed method only requires knowledge of the direct arrival time from a focusing point to the surface and the reflection response of the medium.Comment: 5 pages, 4 figures, 82th EAGE Conference & Exhibitio

    The role of early contrast-enhanced chest computed tomography in the aetiological diagnosis of patients presenting with cardiac tamponade or large pericardial effusion

    Get PDF
    AIMS: The role of chest computed tomography (CT) is not well defined for either diagnosis or management of pericardial disease. The aim of this study was to evaluate the added value of early chest CT in the diagnostic workup for patients presenting with cardiac tamponade or large pericardial effusion of unknown aetiology as the first manifestation of disease. METHODS AND RESULTS: We performed CT scan on 55 patients with pericardial effusion as defined above, undergoing echo-guided pericardiocentesis. We compared the success rate in making diagnosis and/or staging the underlying disorder of three sequential workups, including, respectively, (i) clinical presentation, inflammatory markers, chest X-ray imaging, (ii) all of the above and pericardial fluid analysis, and (iii) all of the above and chest CT. We were able to make diagnosis in 53 patients (96%): the major cause of effusion was malignancy (38%). Clinical and biochemical data were not able to differentiate non-tumour from tumour patients. CT revealed pathological findings in all patients with malignancy: tumour mass in 15/21 (71%) and pathological lymphadenopathy in the remaining 6 cases. The workup including CT provided a significantly higher diagnostic yield than the other two workups (P < 0.0001), both in the overall population and in the two subgroups of neoplastic (Npl) and non-Npl patients. CONCLUSION: In all patients with cardiac tamponade or large pericardial effusion, CT was useful either in identifying the underlying disease or in excluding other potential causes of pericardial effusion. We conclude that chest CT is a very useful non-invasive diagnostic tool to identify and stage pericardial diseases

    Measurements of double-helicity asymmetries in inclusive J/ψJ/\psi production in longitudinally polarized p+pp+p collisions at s=510\sqrt{s}=510 GeV

    Full text link
    We report the double helicity asymmetry, ALLJ/ψA_{LL}^{J/\psi}, in inclusive J/ψJ/\psi production at forward rapidity as a function of transverse momentum pTp_T and rapidity y|y|. The data analyzed were taken during s=510\sqrt{s}=510 GeV longitudinally polarized pp++pp collisions at the Relativistic Heavy Ion Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision energy, J/ψJ/\psi particles are predominantly produced through gluon-gluon scatterings, thus ALLJ/ψA_{LL}^{J/\psi} is sensitive to the gluon polarization inside the proton. We measured ALLJ/ψA_{LL}^{J/\psi} by detecting the decay daughter muon pairs μ+μ\mu^+ \mu^- within the PHENIX muon spectrometers in the rapidity range 1.2<y<2.21.2<|y|<2.2. In this kinematic range, we measured the ALLJ/ψA_{LL}^{J/\psi} to be 0.012±0.0100.012 \pm 0.010~(stat)~±\pm~0.0030.003(syst). The ALLJ/ψA_{LL}^{J/\psi} can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken xx: one at moderate range x0.05x \approx 0.05 where recent RHIC data of jet and π0\pi^0 double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-xx region x2×103x \approx 2\times 10^{-3}. Thus our new results could be used to further constrain the gluon polarization for x<0.05x< 0.05.Comment: 335 authors, 10 pages, 4 figures, 3 tables, 2013 data. Version accepted for publication by Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of higher cumulants of net-charge multiplicity distributions in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV

    Full text link
    We report the measurement of cumulants (Cn,n=14C_n, n=1\ldots4) of the net-charge distributions measured within pseudorapidity (η<0.35|\eta|<0.35) in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. C1/C2C_1/C_2, C3/C1C_3/C_1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2=μ/σ2C_1/C_2 = \mu/\sigma^2 and C3/C1=Sσ3/μC_3/C_1 = S\sigma^3/\mu can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. C as a Rapid Communication. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore