528 research outputs found

    Structural Information in Two-Dimensional Patterns: Entropy Convergence and Excess Entropy

    Full text link
    We develop information-theoretic measures of spatial structure and pattern in more than one dimension. As is well known, the entropy density of a two-dimensional configuration can be efficiently and accurately estimated via a converging sequence of conditional entropies. We show that the manner in which these conditional entropies converge to their asymptotic value serves as a measure of global correlation and structure for spatial systems in any dimension. We compare and contrast entropy-convergence with mutual-information and structure-factor techniques for quantifying and detecting spatial structure.Comment: 11 pages, 5 figures, http://www.santafe.edu/projects/CompMech/papers/2dnnn.htm

    On the Exponentials of Some Structured Matrices

    Full text link
    In this note explicit algorithms for calculating the exponentials of important structured 4 x 4 matrices are provided. These lead to closed form formulae for these exponentials. The techniques rely on one particular Clifford Algebra isomorphism and basic Lie theory. When used in conjunction with structure preserving similarities, such as Givens rotations, these techniques extend to dimensions bigger than four.Comment: 19 page

    Surface critical behavior in fixed dimensions d<4d<4: Nonanalyticity of critical surface enhancement and massive field theory approach

    Full text link
    The critical behavior of semi-infinite systems in fixed dimensions d<4d<4 is investigated theoretically. The appropriate extension of Parisi's massive field theory approach is presented.Two-loop calculations and subsequent Pad\'e-Borel analyses of surface critical exponents of the special and ordinary phase transitions yield estimates in reasonable agreement with recent Monte Carlo results. This includes the crossover exponent Φ(d=3)\Phi (d=3), for which we obtain the values Φ(n=1)0.54\Phi (n=1)\simeq 0.54 and Φ(n=0)0.52\Phi (n=0)\simeq 0.52, considerably lower than the previous ϵ\epsilon-expansion estimates.Comment: Latex with Revtex-Stylefiles, 4 page

    Two-Dimensional Polymers with Random Short-Range Interactions

    Full text link
    We use complete enumeration and Monte Carlo techniques to study two-dimensional self-avoiding polymer chains with quenched ``charges'' ±1\pm 1. The interaction of charges at neighboring lattice sites is described by qiqjq_i q_j. We find that a polymer undergoes a collapse transition at a temperature TθT_{\theta}, which decreases with increasing imbalance between charges. At the transition point, the dependence of the radius of gyration of the polymer on the number of monomers is characterized by an exponent νθ=0.60±0.02\nu_{\theta} = 0.60 \pm 0.02, which is slightly larger than the similar exponent for homopolymers. We find no evidence of freezing at low temperatures.Comment: 4 two-column pages, 6 eps figures, RevTex, Submitted to Phys. Rev.

    Diffusion with random distribution of static traps

    Full text link
    The random walk problem is studied in two and three dimensions in the presence of a random distribution of static traps. An efficient Monte Carlo method, based on a mapping onto a polymer model, is used to measure the survival probability P(c,t) as a function of the trap concentration c and the time t. Theoretical arguments are presented, based on earlier work of Donsker and Varadhan and of Rosenstock, why in two dimensions one expects a data collapse if -ln[P(c,t)]/ln(t) is plotted as a function of (lambda t)^{1/2}/ln(t) (with lambda=-ln(1-c)), whereas in three dimensions one expects a data collapse if -t^{-1/3}ln[P(c,t)] is plotted as a function of t^{2/3}lambda. These arguments are supported by the Monte Carlo results. Both data collapses show a clear crossover from the early-time Rosenstock behavior to Donsker-Varadhan behavior at long times.Comment: 4 pages, 6 figure

    Random Walks with Long-Range Self-Repulsion on Proper Time

    Full text link
    We introduce a model of self-repelling random walks where the short-range interaction between two elements of the chain decreases as a power of the difference in proper time. Analytic results on the exponent ν\nu are obtained. They are in good agreement with Monte Carlo simulations in two dimensions. A numerical study of the scaling functions and of the efficiency of the algorithm is also presented.Comment: 25 pages latex, 4 postscript figures, uses epsf.sty (all included) IFUP-Th 13/92 and SNS 14/9

    Breakdown of Conformal Invariance at Strongly Random Critical Points

    Full text link
    We consider the breakdown of conformal and scale invariance in random systems with strongly random critical points. Extending previous results on one-dimensional systems, we provide an example of a three-dimensional system which has a strongly random critical point. The average correlation functions of this system demonstrate a breakdown of conformal invariance, while the typical correlation functions demonstrate a breakdown of scale invariance. The breakdown of conformal invariance is due to the vanishing of the correlation functions at the infinite disorder fixed point, causing the critical correlation functions to be controlled by a dangerously irrelevant operator describing the approach to the fixed point. We relate the computation of average correlation functions to a problem of persistence in the RG flow.Comment: 9 page

    Simulations of lattice animals and trees

    Full text link
    The scaling behaviour of randomly branched polymers in a good solvent is studied in two to nine dimensions, using as microscopic models lattice animals and lattice trees on simple hypercubic lattices. As a stochastic sampling method we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. Essentially we start simulating percolation clusters (either site or bond), re-weigh them according to the animal (tree) ensemble, and prune or branch the further growth according to a heuristic fitness function. In contrast to previous applications of PERM, this fitness function is {\it not} the weight with which the actual configuration would contribute to the partition sum, but is closely related to it. We obtain high statistics of animals with up to several thousand sites in all dimension 2 <= d <= 9. In addition to the partition sum (number of different animals) we estimate gyration radii and numbers of perimeter sites. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4, and >= 8. In addition, we present the hitherto most precise estimates for growth constants in d >= 3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over exponent at the adsorption transition predicted by Janssen and Lyssy. Finally, we discuss the collapse of animals and trees, arguing that our present version of the algorithm is also efficient for some of the models studied in this context, but showing that it is {\it not} very efficient for the `classical' model for collapsing animals.Comment: 17 pages RevTeX, 29 figures include

    Absolute Single-Molecule Entropies from Quasi-Harmonic Analysis of Microsecond Molecular Dynamics: Correction Terms and Convergence Properties

    Get PDF
    The convergence properties of the absolute single-molecule configurational entropy and the correction terms used to estimate it are investigated using microsecond molecular dynamics simulation of a peptide test system and an improved methodology. The results are compared with previous applications for systems of diverse chemical nature. It is shown that (i) the effect of anharmonicity is small, (ii) the effect of pairwise correlation is typically large, and (iii) the latter affects to a larger extent the entropy estimate of thermodynamic states characterized by a higher motional correlation. The causes of such deviations from a quasi-harmonic behavior are explained. This improved approach provides entropies also for molecular systems undergoing conformational transitions and characterized by highly frustrated energy surfaces, thus not limited to systems sampling a single quasi-harmonic basin. Overall, this study emphasizes the need for extensive phase-space sampling in order to obtain a reliable estimation of entropic contributions
    corecore