31 research outputs found

    Classical light analogue of the nonlocal Aharonov-Bohm effect

    Full text link
    We demonstrate the existence of a non-local geometric phase in the intensity-intensity correlations of classical incoherent light, that is not seen in the lower order correlations. This two-photon Pancharatnam phase was observed and modulated in a Mach-Zehnder interferometer. Using acousto-optic interaction, independent phase noise was introduced to light in the two arms of the interferometer to create two independent incoherent classical sources from laser light. The experiment is the classical optical analogue of the multi-particle Aharonov-Bohm effect. As the trajectory of light over the Poincare sphere introduces a phase shift observable only in the intensity-intensity correlation, it provides a means of deflecting the two-photon wavefront, while having no effect on single photons.Comment: To appear in Europhys. Let

    Prostaglandins differentially modulate mucosal-associated invariant T-cell activation and function according to stimulus

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell type conserved in many mammals and especially abundant in humans. Their semi-invariant T-cell receptor (TCR) recognizes the major histocompatibility complex–like molecule MR1 presenting riboflavin intermediates associated with microbial metabolism. Full MAIT cell triggering requires costimulation via cytokines, and the cells can also be effectively triggered in a TCR-independent manner by cytokines [e.g. interleukin (IL)-12 and IL-18 in combination]. Thus, triggering of MAIT cells is highly sensitive to local soluble mediators. Suppression of MAIT cell activation has not been well explored and could be very relevant to their roles in infection, inflammation and cancer. Prostaglandins (PG) are major local mediators of these microenvironments which can have regulatory roles for T cells. Here, we explored whether prostaglandins suppressed MAIT cell activation in response to TCR-dependent and TCR-independent signals. We found that protaglandin E2 (PGE2) and to a lesser extent protaglandin D2 (PGD2), but not leukotrienes, suppressed MAIT cell responses to Escherichia coli or TCR triggers. However, there was no impact on cytokine-induced triggering. The inhibition was blocked by targeting the signaling mediated via PG receptor 2 (PTGER2) and 4 (PTGER4) receptors in combination. These data indicate that prostaglandins can potentially modulate local MAIT cell functions in vivo and indicate distinct regulation of the TCR-dependent and TCR-independent pathways of MAIT cell activation

    Appendicitis in pregnancy: management

    Get PDF
    Background:Acute appendicitis is an infrequent, yet one of the commonest surgical emergency encountered in pregnancy. Recorded incidence is about 1:1500 pregnancies. The aim of this study was to determine the risk factors associated with prenatal outcome in acute appendicitis during second and third trimester pregnancies. Open access surgery was done due to non-availability of laparoscopy.Methods:A total of 10 pregnant women who were diagnosed with acute appendicitis between Jan 2011 to Jan 2013 were presented and 7 of them operated by open access surgery.Results: Seven pregnant women who were diagnosed with acute appendicitis were operated upon during late pregnancy. The interval between symptom onset and surgery was the only predictive variable. A longer interval between symptom onset and surgery was associated with appendix perforation than with no appendix perforation. There was a significant difference in the rate of preterm labor (5.1% vs. 1.3%) and the rate of fetal mortality (25% vs. 1.7%) between patients with and without a perforated appendix.Conclusion:Delaying surgery correlates to more advanced disease with an increased risk of perforation. This contributes to an increased risk of further complications, including premature labor or abortion, and to higher maternal complication rates. Prompt diagnosis may improve the prenatal outcome.

    Stimulatory MAIT cell antigens reach the circulation and are efficiently metabolised and presented by human liver cells.

    Get PDF
    OBJECTIVE Mucosal-associated invariant T (MAIT) cells are the most abundant T cells in human liver. They respond to bacterial metabolites presented by major histocompatibility complex-like molecule MR1. MAIT cells exert regulatory and antimicrobial functions and are implicated in liver fibrogenesis. It is not well understood which liver cells function as antigen (Ag)-presenting cells for MAIT cells, and under which conditions stimulatory Ags reach the circulation. DESIGN We used different types of primary human liver cells in Ag-presentation assays to blood-derived and liver-derived MAIT cells. We assessed MAIT cell stimulatory potential of serum from healthy subjects and patients with portal hypertension undergoing transjugular intrahepatic portosystemic shunt stent, and patients with inflammatory bowel disease (IBD). RESULTS MAIT cells were dispersed throughout healthy human liver and all tested liver cell types stimulated MAIT cells, hepatocytes being most efficient. MAIT cell activation by liver cells occurred in response to bacterial lysate and pure Ag, and was prevented by non-activating MR1 ligands. Serum derived from peripheral and portal blood, and from patients with IBD stimulated MAIT cells in MR1-dependent manner. CONCLUSION Our findings reveal previously unrecognised roles of liver cells in Ag metabolism and activation of MAIT cells, repression of which creates an opportunity to design antifibrotic therapies. The presence of MAIT cell stimulatory Ags in serum rationalises the observed activated MAIT cell phenotype in liver. Increased serum levels of gut-derived MAIT cell stimulatory ligands in patients with impaired intestinal barrier function indicate that intrahepatic Ag-presentation may represent an important step in the development of liver disease

    Nrf2 controls iron homoeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin

    Get PDF
    Iron is critical for life but toxic in excess because of iron-catalysed formation of pro-oxidants that cause tissue damage in a range of disorders. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates cell-intrinsic protective antioxidant responses, while the peptide hormone hepcidin maintains systemic iron homoeostasis, but is pathophysiologically decreased in haemochromatosis and β-thalassaemia. Here, we show that Nrf2 is activated by iron-induced, mitochondria-derived pro-oxidants and drives bone morphogenetic protein 6 (Bmp6) expression in liver sinusoidal endothelial cells, which in turn increases hepcidin synthesis by neighbouring hepatocytes. In Nrf2 knockout mice, the Bmp6–hepcidin response to oral and parenteral iron is impaired, and iron accumulation and hepatic damage are increased. Pharmacological activation of Nrf2 stimulates the Bmp6–hepcidin axis, improving iron homoeostasis in haemochromatosis and counteracting the inhibition of Bmp6 by erythroferrone in β-thalassaemia. We propose that Nrf2 links cellular sensing of excess toxic iron to the control of systemic iron homoeostasis and antioxidant responses, and may be a therapeutic target for iron-associated disorders

    Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India

    Get PDF
    Delhi, the national capital of India, experienced multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks in 2020 and reached population seropositivity of >50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant, B.1.617.2 (Delta), replaced B.1.1.7 (Alpha). A Bayesian model explains the growth advantage of Delta through a combination of increased transmissibility and reduced sensitivity to immune responses generated against earlier variants (median estimates: 1.5-fold greater transmissibility and 20% reduction in sensitivity). Seropositivity of an employee and family cohort increased from 42% to 87.5% between March and July 2021, with 27% reinfections, as judged by increased antibody concentration after a previous decline. The likely high transmissibility and partial evasion of immunity by the Delta variant contributed to an overwhelming surge in Delhi

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer

    Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern

    Get PDF
    The extent to which immune responses to natural infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and immunization with vaccines protect against variants of concern (VOC) is of increasing importance. Accordingly, here we analyse antibodies and T cells of a recently vaccinated, UK cohort, alongside those recovering from natural infection in early 2020. We show that neutralization of the VOC compared to a reference isolate of the original circulating lineage, B, is reduced: more profoundly against B.1.351 than for B.1.1.7, and in responses to infection or a single dose of vaccine than to a second dose of vaccine. Importantly, high magnitude T cell responses are generated after two vaccine doses, with the majority of the T cell response directed against epitopes that are conserved between the prototype isolate B and the VOC. Vaccination is required to generate high potency immune responses to protect against these and other emergent variants
    corecore