12 research outputs found

    The effect of multiple environmental stressors on the growth and toxicity of the red tide alga Heterosigma akashiwo

    Get PDF
    Heterosigma akashiwo (Y.Hada) Y.Hada ex Y.Hara & M.Chihara is a golden-brown phytoflagellate with high potential to kill fish. These cells create large, nearly mono-specific blooms that persist from weeks to months. Although bloom persistence and frequency remain a mystery, environmental factors such as light, temperature, salinity and CO2 level are proposed as drivers for both bloom initiation and toxicity. As timing and locations of nature blooms are difficult to predict, most of the information on this species comes from laboratory experiments on isolated cells. In this age, when multiple stressors occur simultaneously the traditional “One-factor-at-a-time” (OFAT) approach limits our understanding of how the cells respond to environmental change. Here, I consider the simultaneous effect of multiple parameters and their interaction by employing a design-of-experiment (DOE) approach. The results suggested that the DOE approach is an appropriate method to determine the impact of multi-environmental factors on both bloom formation and toxicity of H. akashiwo. Similarly, the measurement of “fish killing” activities requires the use of an experimental proxy when cells are grown in the laboratory. There is a critical need to understand toxicity in “fish-kill” species. Two commonly employed assays, the rainbow trout cell line RTgill-W1 cytotoxicity assay (RCA) and the erythrocyte lysis assay (ELA) were evaluated against combinatorial environmental conditions (temperature, pCO2, salinity). Increased temperature and pCO2 reduced the expression of toxicicty based on these two assays. With regards to the future conditions of warmer temperatures, and elevated levels of CO2, which impact the salinity, water temperature, and the absorbance of CO2, in many coastal regions worldwide, it is expected these abiotic changes will likely increase the potential growth rate and biomass yield but reduce the toxicity of fish-killing flagellate H. akashiwo in North America

    Effect of plant hormones on the production of biomass and lipid in microalgae

    Get PDF
    Limited fossil fuel reserves, increasing demand for energy in all parts of the world are some driving forces to look for new sources of transportation fuels. Among different options available, microalgae are currently attracting wide interests as an alternative and renewable fuel source. Microalgae are single cell photosynthetic organisms that are known for rapid growth and high energy content and as a part of photosynthesis; they produce oil that can be used as a feedstock for biodiesel production. Some algae strains could contain lipid up to 80% of the dry biomass. The amount of lipid production is in direct relation with the medium composition and growth conditions of algae. For biodiesel production from microalgae, increasing the growth rate and lipid content are the main goals. It has been suggested by some researchers that there are plant hormones capable of improving growth rate and biomass. Plant hormones are chemicals produced by plants and play a crucial role in controlling the way in which plants grow and develop. In this research, the effect of different plant hormones from Brassinosteroids (BRs), Auxin and cytokinin families on biomass, growth kinetic and lipid content of chlorella vulgaris was investigated, and it was found that of the tested hormones only Epibrassinolide has a positive effect on the growth of microalgae. At initial concentrations between 10-12M and 10-10M the total amount of biomass produced was doubled. The lipid content of the algae remained unchanged, resulting in an overall increase of lipid production. Additionally an ionic liquid mediated process for the extraction of lipids was investigated and a one-pot process combining lipid extraction and trans-esterification was proposed

    Microalgal co-cultivation -recent methods, trends in omic-studies, applications, and future challenges

    Get PDF
    The burgeoning human population has resulted in an augmented demand for raw materials and energy sources, which in turn has led to a deleterious environmental impact marked by elevated greenhouse gas (GHG) emissions, acidification of water bodies, and escalating global temperatures. Therefore, it is imperative that modern society develop sustainable technologies to avert future environmental degradation and generate alternative bioproduct-producing technologies. A promising approach to tackling this challenge involves utilizing natural microbial consortia or designing synthetic communities of microorganisms as a foundation to develop diverse and sustainable applications for bioproduct production, wastewater treatment, GHG emission reduction, energy crisis alleviation, and soil fertility enhancement. Microalgae, which are photosynthetic microorganisms that inhabit aquatic environments and exhibit a high capacity for CO2 fixation, are particularly appealing in this context. They can convert light energy and atmospheric CO2 or industrial flue gases into valuable biomass and organic chemicals, thereby contributing to GHG emission reduction. To date, most microalgae cultivation studies have focused on monoculture systems. However, maintaining a microalgae monoculture system can be challenging due to contamination by other microorganisms (e.g., yeasts, fungi, bacteria, and other microalgae species), which can lead to low productivity, culture collapse, and low-quality biomass. Co-culture systems, which produce robust microorganism consortia or communities, present a compelling strategy for addressing contamination problems. In recent years, research and development of innovative co-cultivation techniques have substantially increased. Nevertheless, many microalgae co-culturing technologies remain in the developmental phase and have yet to be scaled and commercialized. Accordingly, this review presents a thorough literature review of research conducted in the last few decades, exploring the advantages and disadvantages of microalgae co-cultivation systems that involve microalgae-bacteria, microalgae-fungi, and microalgae-microalgae/algae systems. The manuscript also addresses diverse uses of co-culture systems, and growing methods, and includes one of the most exciting research areas in co-culturing systems, which are omic studies that elucidate different interaction mechanisms among microbial communities. Finally, the manuscript discusses the economic viability, future challenges, and prospects of microalgal co-cultivation methods

    Cyanobacteria: Model Microorganisms and Beyond

    No full text
    In this review, the general background is provided on cyanobacteria, including morphology, cell membrane structure, and their photosynthesis pathway. The presence of cyanobacteria in nature, and their industrial applications are discussed, and their production of secondary metabolites are explained. Biofilm formation, as a common feature of microorganisms, is detailed and the role of cell diffusion in bacterial colonization is described. Then, the discussion is narrowed down to cyanobacterium Synechocystis, as a lab model microorganism. In this relation, the morphology of Synechocystis is discussed and its different elements are detailed. Type IV pili, the complex multi-protein apparatus for motility and cell-cell adhesion in Synechocystis is described and the underlying function of its different elements is detailed. The phototaxis behavior of the cells, in response to homogenous or directional illumination, is reported and its relation to the run and tumble statistics of the cells is emphasized. In Synechocystis suspensions, there may exist a reciprocal interaction between the cell and the carrying fluid. The effects of shear flow on the growth, doubling per day, biomass production, pigments, and lipid production of Synechocystis are reported. Reciprocally, the effects of Synechocystis presence and its motility on the rheological properties of cell suspensions are addressed. This review only takes up the general grounds of cyanobacteria and does not get into the detailed biological aspects per se. Thus, it is substantially more comprehensive in that sense than other reviews that have been published in the last two decades. It is also written not only for the researchers in the field, but for those in physics and engineering, who may find it interesting, useful, and related to their own research

    Cyanobacteria: Model Microorganisms and Beyond

    No full text
    In this review, the general background is provided on cyanobacteria, including morphology, cell membrane structure, and their photosynthesis pathway. The presence of cyanobacteria in nature, and their industrial applications are discussed, and their production of secondary metabolites are explained. Biofilm formation, as a common feature of microorganisms, is detailed and the role of cell diffusion in bacterial colonization is described. Then, the discussion is narrowed down to cyanobacterium Synechocystis, as a lab model microorganism. In this relation, the morphology of Synechocystis is discussed and its different elements are detailed. Type IV pili, the complex multi-protein apparatus for motility and cell-cell adhesion in Synechocystis is described and the underlying function of its different elements is detailed. The phototaxis behavior of the cells, in response to homogenous or directional illumination, is reported and its relation to the run and tumble statistics of the cells is emphasized. In Synechocystis suspensions, there may exist a reciprocal interaction between the cell and the carrying fluid. The effects of shear flow on the growth, doubling per day, biomass production, pigments, and lipid production of Synechocystis are reported. Reciprocally, the effects of Synechocystis presence and its motility on the rheological properties of cell suspensions are addressed. This review only takes up the general grounds of cyanobacteria and does not get into the detailed biological aspects per se. Thus, it is substantially more comprehensive in that sense than other reviews that have been published in the last two decades. It is also written not only for the researchers in the field, but for those in physics and engineering, who may find it interesting, useful, and related to their own research

    Insights into Cellular Localization and Environmental Influences on the Toxicity of Marine Fish-Killing Flagellate, <i>Heterosigma akashiwo</i>

    No full text
    Heterosigma akashiwo is a unicellular microalga which can cause massive mortality in both wild and cultivated fish worldwide, resulting in substantial economic losses. Environmental parameters such as salinity, light, and temperature showed a significant effect on bloom initiation and the toxicity of H. akashiwo. While in previous studies a one-factor-at-a-time (OFAT) approach was utilized, which only changes one variable at a time while keeping others constant, in the current study a more precise and effective design of experiment (DOE) approach, was used to investigate the simultaneous effect of three factors and their interactions. The study employed a central composite design (CCD) to investigate the effect of salinity, light intensity, and temperature on the toxicity, lipid, and protein production of H. akashiwo. A yeast cell assay was developed to assess toxicity, which offers rapid and convenient cytotoxicity measurements using a lower volume of samples compared to conventional methods using the whole organism. The obtained results showed that the optimum condition for toxicity of H. akashiwo was 25 °C, a salinity of 17.5, and a light intensity of 250 ÎŒmol photons m−2 s−1. The highest amount of lipid and protein was found at 25 °C, a salinity of 30, and a light intensity of 250 ÎŒmol photons m−2 s−1. Consequently, the combination of warm water mixing with lower salinity river input has the potential to enhance H. akashiwo toxicity, which aligns with environmental reports that establish a correlation between warm summers and extensive runoff conditions that indicate the greatest concern for aquaculture facilities

    Yeast Cell as a Bio-Model for Measuring the Toxicity of Fish-Killing Flagellates

    No full text
    Harmful algal blooms are a significant environmental problem. Cells that bloom are often associated with intercellular or dissolved toxins that are a grave concern to humans. However, cells may also excrete compounds that are beneficial to their competition, allowing the cells to establish or maintain cells in bloom conditions. Here, we develop a yeast cell assay to assess whether the bloom-forming species can change the toxicity of the water environment. The current methods of assessing toxicity involve whole organisms. Here, yeast cells are used as a bioassay model to evaluate eukaryotic cell toxicity. Yeast is a commonly used, easy to maintain bioassay species that is free from ethical concerns, yet is sensitive to a wide array of metabolic and membrane-modulating agents. Compared to methods in which the whole organism is used, this method offers rapid and convenient cytotoxicity measurements using a lower volume of samples. The flow cytometer was employed in this toxicology assessment to measure the number of dead cells using alive/dead stain analysis. The results show that yeast cells were metabolically damaged after 1 h of exposure to our model toxin-producing euryhaline flagellates (Heterosigma akashiwo and Prymnesium parvum) cells or extracts. This amount was increased by extending the incubation time

    Comparative assessment of algaecide performance on freshwater phytoplankton: Understanding differential sensitivities to frame cyanobacteria management

    No full text
    International audienceCyanobacterial bloom represent a growing threat to global water security. With fast proliferation, they raise great concern due to potential health and socioeconomic concerns. Algaecides are commonly employed as a mitigative measure to suppress and manage cyanobacteria. However, recent research on algaecides has a limited phycological focus, concentrated predominately on cyanobacteria and chlorophytes. Without considering phycological diversity, generalizations crafted from these algaecide comparisons present a biased perpective. To limit the collateral impacts of algaecide interventions on phytoplankton communities it is critical to understand differential phycological sensitivities for establishing optimal dosage and tolerance thresholds. This research attempts to fill this knowledge gap and provide effective guidelines to frame cyanobacterial management. We investigate the effect of two common algaecides, copper sulfate (CuSO4) and hydrogen peroxide (H2O2), on four major phycological divisions (chlorophytes, cyanobacteria, diatoms, and mixotrophs). All phycological divisions exhibited greater sensitivity to copper sulfate, except chlorophytes. Mixotrophs and cyanobacteria displayed the highest sensitivity to both algaecides with the highest to lowest sensitivity being observed as follows: mixotrophs, cyanobacteria, diatoms, and chlorophytes. Our results suggest that H2O2 represents a comparable alternative to CuSO4 for cyanobacterial control. However, some eukaryotic divisions such as mixotrophs and diatoms mirrored cyanobacteria sensitivity, challenging the assumption that H2O2 is a selective cyanocide. Our findings suggest that optimizing algaecide treatments to suppress cyanobacteria while minimizing potential adverse effects on other phycological members is unattainable. An apparent trade-off between effective cyanobacterial management and conserving non-targeted phycological divisions is expected and should be a prime consideration of lake management

    Growth and pigment production of Synechocystis sp. PCC 6803 under shear stress

    No full text
    International audienceAbstract Cyanobacteria, such as Synechocystis , have recently become attractive hosts for sustainable production of biofuels and bio‐fixation of CO 2 due to their genetic tractability and relatively fast growth. Cultivation of cyanobacteria requires shear stress, which is generated by mixing and air bubbling. In the present work, the impact of shear stress caused by stirring and air bubbling on the growth and pigment production of Synechocystis sp. PCC 6803 is investigated. For this purpose, agitated and airlift bubble column photobioreactors were used. The results showed that the growth and yield production were improved by mixing the culture system. However, there is a limit to this improvement: In the case of air bubbling, increasing shear stress (by rising air bubbling flow rate) to more than 185 mPa did not show any significant growth enhancement, while increasing the shear stress from 40 to 185 mPa improved the yield production up to 85%. At the optimal stirring rate, the yield production in the stirred photobioreactors increased by about 60% as compared to that of unstirred culture. The measurements of chlorophyll a and carotenoid showed a strong correlation between biomass production and total pigment content. The highest level of cellular pigment (pigment per cell) was detected at the early stages of culture growth when cells were preparing for the rapid exponential growth phase

    Investigation of Synechocystis sp. CPCC 534 Motility during Different Stages of the Growth Period in Active Fluids

    No full text
    International audienceThe motility behavior of suspended microorganisms plays an essential role in the properties of active fluids. Despite the important progress in our understanding of microorganisms’ motility in recent years, there are still several open questions about the dynamics of cell motility in active suspensions. Of special interest is the relationship between cell motility and age. In this study, cyanobacterium Synechocystis sp. CPCC 534 was used as the model microorganism, and the cell trajectories were tracked for 78 days during the cell growth period. Results showed that the length of cell trajectories had substantially increased from the exponential growth phase to the stationary phase and had declined at the end of the stationary phase. Similar trends were observed for the cells’ mean squared displacement (MSD), the time-dependent diffusion coefficient of cell suspensions, and the cell displacement probability density function (PDF). These results suggest that the cellular age of microorganisms has a significant effect on various metrics of cell motility and, therefore, can impact the transport properties of active suspensions.</jats:p
    corecore