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Abstract 

Limited fossil fuel reserves, increasing demand for energy in all parts of the world are some 

driving forces to look for new sources of transportation fuels. Among different options 

available, microalgae are currently attracting wide interests as an alternative and renewable 

fuel source. 

Microalgae are single cell photosynthetic organisms that are known for rapid growth and 

high energy content and as a part of photosynthesis; they produce oil that can be used as a 

feedstock for biodiesel production. Some algae strains could contain lipid up to 80% of the 

dry biomass. The amount of lipid production is in direct relation with the medium 

composition and growth conditions of algae. 

For biodiesel production from microalgae, increasing the growth rate and lipid content are 

the main goals. It has been suggested by some researchers that there are plant hormones 

capable of improving growth rate and biomass. Plant hormones are chemicals produced by 

plants and play a crucial role in controlling the way in which plants grow and develop. 

In this research, the effect of different plant hormones from Brassinosteroids (BRs), Auxin 

and cytokinin families on biomass, growth kinetic and lipid content of chlorella vulgaris was 

investigated, and it was found that of the tested hormones only Epibrassinolide has a positive 

effect on the growth of microalgae. At initial concentrations between 10
-12

M and 10
-10

M the 

total amount of biomass produced was doubled. The lipid content of the algae remained 

unchanged, resulting in an overall increase of lipid production. 

 Additionally an ionic liquid mediated process for the extraction of lipids was investigated 

and a one-pot process combining lipid extraction and trans-esterification was proposed. 

Keywords 

Microalgae, Chlorella vulgaris, Plant hormones, Brassinosteroids (BRs), Auxin, Cytokinin, 

Biomass, Growth kinetic, Lipid content, Ionic liquids 
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Chapter 1 

1 Introduction 

1.1 Microalgae as Biofuel  

Limited fossil fuel reserves, increasing demand for energy in all parts of the world and 

the likely link of increasing atmospheric carbon dioxide levels to global warming are 

some driving forces to investigate the production of renewable liquid transportation fuels. 

Globally 11,295 million tons of oil was used in 2008 and it is expected to increase by 

60% in 2030. According to a recent study about the rate of energy consumption in the 

world, coal reserves are estimated to deplete in two or three centuries, while these periods 

are 40 years for oil and 63 years for natural gas (Gilbert & Perl, 2005; Gonçalves et al., 

2013; S. Lee et al., 2007). However, there is no scientific consensus regarding the amount 

of recoverable fossil fuels (Shafiee & Topal, 2009). Estimates are constantly changing 

and new technologies such as hydraulic fracturing might completely change the global 

energy flow and will thereby influence the medium to long term interested in renewable 

fuels (King, 2012). 

Main health concerns associated with burning fossil fuel are related to their complex 

composition and resulting incomplete combustion products such as carbon monoxide 

(CO), nitrogen oxides (NOx), particle pollutants (acids, organic chemicals, metals), 

aldehydes, hydrocarbon and benzene derivatives (Hoffert et al., 2002). The increased 

concentration of atmospheric greenhouse gases is widely believed to result in extreme 

weather occurrences, rise in sea levels, extinction of species, retreat of glaciers and many 

other calamities (Gouveia & Oliveira, 2009; Hosikian et al., 2010). 

Therefore finding alternative fuels which are clean, environmentally friendly, 

biodegradable, cheap and highly efficient, has become a challenge today. Political and 

economic factors have resulted largely in the search for alternatives to oil, rather than 

replacing the entire fossilize fuel sector with renewable source. This is largely due to 

current access capacity of coal and natural gas in North America, a trend likely to 

increase due to advancements in hydraulic fracturing (King, 2012). Some alternative 
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sources for intermediate and final products derived from petrochemicals are corn 

fermentation for ethanol, biodiesel from soybean or algae, BTX (benzene, toluene, and 

xylenes) from coal, biogas or bioliquid from agricultural wastes, hydrogen as 

transportation fuel, jet fuel from shale oil or crop oil, Fischer–Tropsch fuel from coal or 

biomass, bisphenols from agricultural sources, liquid transportation fuels from a natural 

gas source by ZSM-type catalysis, ethylene/propylene via conversion of synthesis gas, 

use of coal-derived acetylene for petroleum-derived ethylene as a building block 

chemical, and liquid fuels from spent tires or mixed wastes, etc.(Y. Gao et al., 2012; S. 

Lee et al., 2007). 

Among all sources listed above, microalgae have attracted a great deal of interest as an 

alternative source for producing biodiesel. Microalgae are unicellular photosynthetic 

microorganisms, which alter sunlight, water and carbon dioxide to algal biomass. In large 

microalgae cultivation systems with high efficiency, the potential capture efficiency of 

CO2 can be as high as 99% (Lim et al., 2012). They are also able to be grown on marginal 

land and be cultivated in fresh, waste or salt water.  The growth yield of algae is higher 

compared to other feedstock being used at this time. The doubling time of algae can be 

changed between 4 to 24 hours. The oil content of some algae can be more than 80% 

while this number for most agricultural harvests which are being used for producing 

biodiesel is less than 5% of the biomass.  Figure 1-1 compares the theoretical oil yield of 

different feedstocks per unit of growing area (Demirbas, 2010; Y. Gao et al., 2012; Lim 

et al., 2012; Radakovits et al., 2010; Wawrik & Harriman, 2010). 
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Figure 1-1: Oil Yields of Feedstocks for Biofuel from EarthTrends (2008). Reprinted 

with permission of Chemistry Central Journal (Y. Gao et al., 2012). 

 

The amount of oil production in different species of algae is dissimilar and some strains 

could produce up to 80% oil by weight (Demirbas A. & Demirbas F., 2011). Table 1-1 

shows the oil content of some microalgae. 



4 

 

Table 1-1: Lipid content of some microalgae (% dry matter). Reprinted with 

permission of Springer (Gouveia & Oliveira, 2009). 

 

The main bottleneck of using microalgae for biofuel production is the high commercial 

cost of production. Sunlight, carbon dioxide, water and inorganic salts are the main 

factors for photosynthetic growth and the required temperature is within 293–303 K. 

Finding high lipid algae strains, maintaining selected species in outdoor culture, lack of 

commercial plants in operation, limited data on large scale cultivation of microalgae, high 

energy inputs for pumping water, CO2 transfer and mixing the culture suspension, 

harvesting and dewatering the produced algal biomass are the main challenges, which 

increase the commercial price of the final product (Rodolfi et al., 2009).Therefore, free 

available sunlight and water containing essential salts and minerals could reduce the 

production cost (Demirbas, 2010; Hunt et al., 2011).These factors have stimulated the 

efforts to maximize the oil yield of these organisms and minimize the costs associated 

with growing the algae, extracting lipids, and converting these lipids into usable 
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biodiesel. Lipid extraction is a challenging procedure. Conventional methods in the 

presence of organic solvents have been used for a long time. Today a new class of solvent 

has emerged. Ionic liquids (ILs) are known as green solvents which can be used for 

extracting lipids from algal biomass (Earle & Seddon, 2000; Gonçalves et al., 2013; Kim 

et al., 2012). 

In this study, Chlorella vulgaris was chosen because it grows fast and is easy to maintain 

(Andersen, 2005) and able to grow heterotrophic and mixotrophic (Liang, Sarkany, & 

Cui, 2009). It has been suggested by some researchers that there are plant hormones 

capable of improving growth rate and biomass of microalgae (A Bajguz & Czerpak, 

1996; Andrzej Bajguz, 2010; Hunt et al., 2010). 

Plant hormones or phytohormones are a class of chemical compounds that play a role in 

plant metabolism and work as signal molecules. Because of the close relationship 

between plants and algae, phytohormones are expected to play homologous roles in 

algae. These phytohormones are categorized in different groups , ranging from the 

growth-stimulating auxins to cell division-inducing cytokinins (Tsavkelova et al., 2006). 

This research reports the lipid content of Chlorella vulgaris in the presence of different 

plant hormones in addition to biomass, which is typically reported by other researchers. 

Moreover, unlike previous studies where only shake flasks were used, in the current 

study measurements were made in microscale using a 96-well plate. In addition to plant 

hormones, ionic liquids were used for fractioning microalgae and extracting lipid.   

1.2 Thesis Objective 

The main objective of this thesis is to study the effect of different plant hormones on the 

growth rate, biomass concentration and lipid production of Chlorella vulgaris. In order to 

reach this goal, first a suitable assay to measure small changes had to be developed and 

validated. A secondary objective was to evaluate the use of ionic liquids to recover lipids. 
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Chapter 2 

2 Literature Review 

Modern societies have an ever increasing need for readily available energy. There are 

different available types of fuel around the world, for which the demand changes 

depending on their application, location, cost, environmental and socioeconomic factors 

and politics (S. Lee et al., 2007). Among all energy sources, fossil fuels like coal, 

petroleum and natural gas comprise more than 80% of the energy resources consumption 

(Scarsella et al., 2010). Limited reserves of fossil fuels, their negative impact on health 

and environment and unstable price are some driving forces for scientists to look for 

clean and renewable fuel replacements (S. Lee et al., 2007; Mulumba & Farag, 2012; Yu 

et al., 2011). From the other point of view, finding clean and renewable energy sources is 

one of the challenging problems for people in the medium to long term (Mata et al., 

2010). Among different options, solar energy, either thermal or photovoltaic, 

hydroelectric, geothermal, wind, biofuels, and carbon sequestration are some sources, 

which have been studied and used. Depending on the area of application the better suited 

option can be chosen although, each selection has its own benefits and problems. 

Biofuels can be used as a substitute for energy production, which can help to reduce the 

adverse effects of the frequent oil supply crisis, decrease long-term replacement of fossil 

fuels, and help countries with no fossil fuel reserves to reduce their energy dependence 

(Gouveia & Oliveira, 2009; Mata et al., 2010).  

2.1 Biofuels 

Biofuels are renewable energy sources produced from living organisms or from 

metabolic by-products such as organic or food waste products. They can be liquid, solid 

or gaseous fuels (Yu et al., 2011; Horn, 2010). Lignified cellulose such as wood is the 

most common solid biofuel that has been burned for energy for a very long time. On the 

other hand, more refining is necessary for liquid and gaseous biofuels, which consist of 

bioethanol, biodiesel, and engine-combustible hydrocarbons as well as methane from 

anaerobic digestion (Yu et al., 2011). The first biofuel combustion engine was invented in 
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1929 by Rudolph Diesel when he fired his invented diesel engine with raw vegetable 

(peanut) oil (Gadonneix et al., 2010). Nowadays, there are many different forms of 

feedstocks for producing biofuels such as animal manures and municipal solid wastes, 

plant-derived starch and sugar feedstocks, animal fat and seed and algal oils (Drapcho, 

Nhuan, & Walker, 2008). Figure 2-1 illustrates the sources of energy used in the United 

States in 2007. The amount of biofuels consumption was about 53% of the total 

renewable energy. 

 

Figure 2-1: Sources of energy used in the United States in 2007. Reprinted with 

permission of Infobase Publishing (Horn, 2010). 

 

2.2 Liquid Transportation Fuels 

The first large scale, well-documented, modern attempt to convert biomass into a liquid 

transportation fuel was started in the United States during the energy crisis of October, 

1973. Carbohydrate can be converted to alcohols (ethanol, butanol), lipids to fatty acid 
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esters (biodiesel), long chain and cyclic hydrocarbons (gasoline equivalents and jet fuels). 

Glucose from starch-containing crops such as corn; sucrose derived from sugar cane and 

sugar beets; palm and vegetable oils; and lignocellulosic biomass, including grasses such 

as Miscanthus and switchgrass, and woody biomass are some biomass sources for fuel 

production. (Blanch, 2012). 

2.2.1 Ethanol 

The first person envisioning to use ethanol as a transportation fuel was Henry Ford. In 

1908 he proposed to use ethanol as the primary fuel for his Model T but then switched to 

less expensive gasoline (Mousdale, 2008). Sources which can be used for producing 

ethanol are starch containing feedstocks such as cereal grains, barley, sorghum, oat, and 

rice, sugar containing feedstocks such as sugarcane and sugar beet, Lignocellulosic 

feedstocks, microalgae and many more (Demirbas, 2010; Drapcho et al., 2008). Different 

feedstocks are used for the production of ethanol around the world. Brazil consumes 

sugarcane, United States corn, China corn and wheat, India sugarcane, and France utilizes 

sugar beets and wheat as feedstock for the production of ethanol (Drapcho et al., 2008). 

Conversion of biomass carbohydrates to ethanol is an anaerobic process. The yeast 

Saccharomyces cerevisiae is the universal organism for producing ethanol from starch 

and sugar feedstocks (Drapcho et al., 2008; Mielenz, 2009). The produced ethanol is 

blended into gasoline for use as transportation fuel (Gadonneix et al., 2010). Ethanol has 

a higher octane number, which leads to higher engine efficiencies and reduces carbon 

monoxide (CO) emissions from the engine (Mousdale, 2008). 

2.2.2 Biodiesel 

Biodiesel is another renewable biofuel which is derived from oil crops such as soybeans, 

canola oil, palm oil and corn oil, waste cooking oil, animal fat and microalgae (Chisti, 

2007; Mielenz, 2009; Mousdale, 2008). The first idea of blending vegetable oils with 

conventional diesel fuels came from Rudolf Diesel and Henry Ford. In 2005, the amount 

of biodiesel produced around the world was equivalent to 2.91 million tonnes oil, of 

which 87% was manufactured in the European Union, 7.5% in the United States and 

1.7% Brazil (Mousdale, 2008). Biodiesel is produced from transesterification of 
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triacylglycerides with monohydric alcohols (Mielenz, 2009). Figure 2-2 shows the 

procedure. 

 

Figure 2-2: Transesterification of oil to biodiesel. R1–3 are hydrocarbon groups. 

Reprinted with permission of Elsevier (Chisti, 2007). 

Recently, microalgae have attracted lots of attention among these different feedstocks as 

a potential source of biodiesel. Some strains of microalgae are rich in oil which can be 

converted to biodiesel. In addition, they can grow rapidly and need a small area for 

producing algal biomass compared to other plants that are used for biodiesel production 

(Chisti, 2007; Demirbas, 2010; Gadonneix et al., 2010). 

2.3 Algae 

Algae are simple organisms with no vascular tissue except brown algae where they have 

a higher degree of organ differentiation. These organisms are photoautotrophic, which 

means they are able to produce organic carbon through photosynthesis by using sunlight, 

CO2 and water. Some species of Euglena do not have chloroplasts; therefor they use 

other organisms as their food. Member of algae family vary in size, cellular structure and 

biology. Their size starts from 1µm in diameter for single cell microalgae to 50 m long 

multi-cellular forms such as kelp that belongs to macroalgae (Belcher & Swale, 1976; 

Frost et al., 2012; Serediak & Huynh, 2011). There are different methods for 

classification of algae. Except for Cyanobacteria, which are prokaryote the rest of them 

are eukaryote and belong to plant kingdom, phylum of Cryptogamia (Non flowering 

plants) and class of Thallophyta. Depending on their size algae are divided into two 

orders, Microalgae and Macroalgae. Microalgae contain four families while Macroalgae 
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contain three families. Figure 2-3 shows this classification (Smith et al., 1937; Transean, 

1952) 

 

Figure 2-3: Algae classification 

 

2.3.1 Algal Cultivation 

Microalgae are able to grow in different types of metabolisms such as photrophic, 

heterotrophic, mixotrophic and photo-heterotrophic. In phototrophic system, light is the 

only source of energy for producing chemicals through photosynthetic reactions but in 

heterotrophic condition, only organic compounds are consumed as carbon and energy 

source. When these two conditions integrate and organisms need both light and organic 

compounds, mixotrophic condition results. Depending on the concentration of organic 

compounds and light intensity available, the organisms are able to live either 

autotrophically or heterotrophically. There is a small difference between, mixotrophic 

and photo-heterotrophic. In photo-heterotrophic, light is required to use organic 
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compounds as carbon source (Gouveia, 2011). Although different strains of microalgae 

contain different amount of biomass and lipid but it seems that heterotrophic condition 

results in better productivity and faster growth in comparison with other cultivation 

conditions. But this system is able to be contaminated very easily especially in open 

cultivation systems. On the other hand, the high cost of organic carbon is a limiting factor 

for this system  (Y. Chen et al., 2011; Gouveia, 2011; Zheng et al., 2012). 

Indoor and outdoor operated systems are used for microalgae cultivation, which can be 

closed (photobioreactor) or open (open ponds and raceway ponds) (Gouveia, 2011; Koller 

et al., 2012). The contamination such as unwanted algae, mould, yeast, fungi, protozoa 

and bacteria in closed systems is less than open systems (Y. Chen et al., 2011; Gouveia, 

2011; Koller et al., 2012; Mata et al., 2010). Although productivity is higher in 

photobioreactors, operation and facilities cost is also higher than open ponds (Zheng et al., 

2012). 

2.3.2 Microalgae Growth Kinetics 

Increase in the algal biomass or its growth takes place when the compounds from the 

surrounding are added to the organism and its size and mass increase. Increase in cell 

number can be followed by cell division, which can increase the number of cells in a 

population. In a simple batch culture, where algae growth is not restricted by external 

factors such as heat and mass-transfer, the algal growth can be divided into phases 

illustrated in Figure 2-4 (Andersen, 2005; Becker, 1994; Willey et al., 2009) 

A. Adaptation (lag phase) 

B. Exponential growth phase (log phase) 

C. Stationary phase 

D. Logarithmic death phase 
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Figure 2-4: Unrestricted algae growth curve in a closed system (Willey et al., 2009).  

At the beginning when algal cells are added to the new medium, they try to adapt 

themselves with the new condition. This stage is known as Lag phase. Then an 

accelerating growth starts and cells divide and grow at the maximal rate. This phase is 

named exponential (log) phase.  

Limited nutrient supplies prevent microorganisms from growing and increasing their 

biomass when reaching the stationary phase. At this point an equilibrium between cell 

division and cell death occurs followed by a stage where cells stop dividing but remain 

metabolically active. This process continue till microorganisms run out of nutrients and 

die (Andersen, 2005; Becker, 1994; Willey et al., 2009). 

2.3.3 Microalgae as Feedstock for Biofuel 

Microalgae can be seen as a renewable energy source and a suitable alternative feedstock 

for producing biofuels. They are also used as water bioremediation agents, as feed for 

aquaculture, as food for humans and animals, in pigment production, in bioremoval of 

heavy metals, and in agriculture. Microalgae are prokaryotic or eukaryotic photosynthetic 

microorganisms with a high growth rate and are able to consume carbon dioxide and 

convert it to potential biofuels, food, feed, and high-value products. They are able to 

grow on non-arable land and waste or salt water. They can be harvested daily and their 
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production is not seasonal. If inorganic elements can be reprocessed and saltwater- based 

cultivation systems are developed, there is no direct competition between agricultural 

food production resources and microalgae as biofuel feedstock. Some strains of 

microalgae contain high amounts of oil, which could be extracted and purified and 

converted to fuels. The amount of neutral lipid, which is stored in cytosolic lipid bodies 

as triacylglycerol, TAG, is about 20-50% of algae dry weight. Table 2-1 displays lipid 

content and productivities of different microalgae species (W. Chen et al., 2009; da Silva 

et al., 2009; Gonzalez & Bashan, 2000; Gouveia & Oliveira, 2009; Mata et al., 2010; 

Radakovits et al., 2010).  

To improve biofuel production from microalgae, engineering solutions to optimize the 

productivity of any microalgae cultivation system and chose the suitable strains for 

biofuel production are important (Radakovits et al., 2010). There are major technological 

obstacles for microalgae production, harvesting and extraction of biofuel and co-products 

such as phytochemicals. Screening of wild-type microalgae species, possible production 

enhancement by genetic engineering, downstream processing requirements and 

biorefining are some limitations which need to be solved (Brennan et al., 2012). CO2 

fixations by microalgae has been proposed as a method for decreasing the CO2 from the 

environment and therefore reduce emissions of greenhouse gases (Da Silva et al., 2009). 
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Table 2-1: Lipid content and productivities of different microalgae species. 

Reprinted with permission of Elsevier (Mata et al., 2010). 
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2.3.3.1 Biodiesel Production from Algae 

For producing biodiesel from microalgae, the first bottleneck, as mentioned in pervious 

sections, is choosing the right microalgae strain with high lipid content and productivity 

(Aguirre et al., 2012).   

The next step is microalgal biomass production, the manipulation of which is the main 

goal in this research. In this stage, the biomass production and lipid content would be 

different depending on the cultivation mode such as photoautotrophic, heterotrophic and 

mixotrophic production, types of culture (open and closed systems), culture strategies 

(batch or continuous culture) and the essential nutrients in the growth medium (Chisti, 

2007; Gallardo Rodríguez et al., 2010).  

Pursuing this, harvesting and dewatering of microalgae biomass are followed. Finding a 

suitable method, which is technically appropriate and economically favorable for any 

species of algae is still an active research area (Mata et al., 2010). The biomass recovery 

process would be a challenge regarding the low cell densities and small size of cells.  

Flocculation, filtration, flotation, and centrifugation are some traditional methods which 

are used in this step (Aguirre et al., 2012; Mohan et al., 2009). The harvested biomass 

should be dry to prevent decomposition. Air drying, direct sun, use of rotating drums, 

spray dryers, freeze dryers or fluidized beds are some common used methods (Mata et al., 

2010; Mielenz, 2009). 

Disruption of cell wall and extracting lipids is the next step for biodiesel production from 

microalgae. This step is the most challenging section in the total process of biodiesel 

production. Finding an affordable and simple technique with high efficiency is still an 

area that needs more investigation. In order to disrupt cell wall, solvents, sonication, 

homogenization, bead-beating, lyophilization can be used (Ryckebosch et al., 2011). 

Solvent extraction is one the most common methods (Bligh & Dyer, 1959a; Floch et al., 

1956; Long & Abdelkader, 2011). Ionic liquids have also been used as extraction 

solvents in biodiesel production which will be discussed in the next section (Kim et al., 

2012; Zhao & Baker, 2013) 
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Converting the extracted lipid into biodiesel is the final step. Transesterification 

(alcoholysis) is the common synthetic route to biodiesel production. In transesterification 

process the triglycerides react with alcohol in the presence of catalyst and produce 

glycerol and methyl esters of fatty acids, which is known as biodiesel (Figure 2-2) 

(Chisti, 2007; Gonçalves et al., 2013; Pragya et al., 2013; Zhao & Baker, 2013) 

2.3.3.2 Ionic Liquid-mediated Extraction of Lipids from Algal 
Biomass 

Ionic liquids (ILs) often referred to as ‘green solvents’ are organic salts that usually melt 

below 100ºC and consist of ions. They are able to dissolve polar and non-polar organic, 

inorganic, and polymeric compounds (Earle & Seddon, 2000; Gonçalves et al., 2013; S. 

H. Lee et al., 2009; Pragya et al., 2013). Selected ILs are also capable to dissolve 

cellulose, hemicelluloses and lignin (Blanch, 2012; Cruz et al., 2013; S. H. Lee et al., 

2009). This extraction method for product recovery is very new and requires further 

investigations. 

Kim and his team dissolved Chlorella vulgaris biomass with a mixture of ionic liquid and 

methanol which left lipids insoluble (Kim et al., 2012). They used commercial and 

cultivated Chlorella vulgaris and applied Bligh and Dyer gravimetric methods versus 

ionic liquid mixture for extracting the total lipid content. The final data showed that total 

contents of lipids extracted from commercial and cultivated Chlorella vulgaris were 

10.6% and 11.1%, respectively, while with a mixture of ionic liquid these numbers 

increased to 12.5% and 19.0%, respectively. After analyzing fatty acids with GC they 

observed that C16:0, C16:1, C18:2, and C18:3 fatty acids were dominant, which can be 

used as a source of biodiesel production (Kim et al., 2012).  

The low mass transfer rate caused by the high viscosity of ILs is the main problem of 

using this solvent. Microwave and ultrasound irradiation seem to be suitable options for 

overcoming this problem. Kim’s team reported that ultrasound irradiation could highly 

enhance the extraction rate and yield of the extraction system when using ILs. The total 

average extracted lipid from Chlorella vulgaris using four methods including soxhlet 
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method, the Bligh and Dyer’s method, ILs, and ILs with ultrasonication was 21, 29, 47 

and 75 mg/g dry cell weight, respectively (Kim et al., 2013). 

2.3.3.3 Chlorella vulgaris  

Chlorella vulgaris is a unicellular, spherical, fresh water green alga which belongs to 

phylum Chlorophyta and order Chlorellales (Gruneberg & Komor, 1976; Luz et al., 

2002; Sharma et al., 2011). Chlorella vulgaris is a rich source of chlorophyll, which is 

used widely as a health food and feed supplement (Sharma et al., 2011), it is also used for 

tertiary wastewater treatment, and especially for nitrogen and phosphorus compounds and 

heavy metals removal (Gonzalez-Bashan et al., 2000; Luz et al., 2002). From the other 

point of view, Chlorella vulgaris is one of the best options for biodiesel production due to 

its high lipid production regarding quantity (combination of biomass productivity and 

lipid content) and quality (fatty acid composition) (Gouveia, 2011). This species of green 

algae is close to primitive land plants and is a suitable  candidate for investigating the 

effect of complex plant chemicals such as plant hormones (Provasoli, 1958). 

 

Figure 2-5: Light Microscopic observation of Chlorella vulgaris UTEX 2714. 

Reprinted with permission of Biotek (Held & Raymond, 2011) 
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2.4 Plant Hormones 

Plant hormones or phytohormones are signal molecules that are produced by plants and 

control a wide range of plant growth and developmental processes at low concentrations. 

Plant hormones are capable of adjusting the growth rate of the individual parts and 

producing the form that we recognize as a plant. They also regulate the processes of 

reproduction, stimulating defensive responses, differentiation, development, and 

formation of flowers, seeds and leaves, cell division or seed germination, inhibiting stem 

elongation and etc. Most plant hormones are able to tolerate charge, therefore they can be 

adsorbed to specific membrane lipid (Davies, 2004; Gzyl-Malchera et al., 2007). 

These plant hormones are categorized in six different groups shown in Table 2-2. 

Table 2-2: Hormones classification and function (Davies, 2004) 

Hormones Name Function in Plants Anticipated effect on Microalgae 

 

Brassinosteroids (BRs) 

Control of division; Growth by elongation; 

differentiation of the vascular system; inhibiting root 

growth; BRs are needed for fertility; etc. 

 

Increasing the growth rate 

 

Cytokinin 

Control of  cell division; bud development; 

development of the leaf blade; senescence retardation; 

promote shoot initiation;  etc. 

 

Increasing the growth rate 

 

Abscisic acid 

Control of stomata apparatus function; growth 

inhibition; seed dormancy; inhibits shoot growth; 

induces storage protein synthesis in seed; etc. 

 

Growth inhibition 

 

Auxin 

Induction of elongation growth and stem growth; 

stimulates cell division; differentiation of phloem 

elements; apical dominance; tropisms; initiation of 

root formation; etc. 

 

Increasing the growth rate 

 

Ethylene 

Senescence induction; initiation of defensive 

responses; decrease elongation; Leaf and fruit 

abscission; etc. 

accelerated ethylene synthesis 

underlies some auxin-depended 

responses 
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Gibberellins 

Stem elongation; initiation of seed germination; cell 

division and elongation; Enzyme production during 

germination; etc. 

 

Increasing the growth rate 

 

Some of these plant hormones have been biochemically detected in green algae, 

including chlorophytes and seem to have the same role as in land plants. On the other 

hand, green algae are unicellular and can be grown axenically in the laboratory, hence are 

appropriate models for investigating the effect of plant hormones on them (Blanc et al., 

2010). Improving the biomass production of microalgae in the presence of plant 

hormones and micronutrients has been reported a few times since the 1930’s (Hunt et al., 

2010). In this research, different plant hormones from three different families were 

chosen as follows.  

2.4.1 Brassinosteroids (BRs) 

Brassinosteroids are steroidal compounds, which were first isolated from Brassica pollen. 

Today, over 40 brassinosteroids have been recognized. At low concentrations, they 

stimulate the growth and affect the development, cell division, cell elongation and 

vascular differentiation but have inhibitory effect on root growth. On the other hand, they 

are able to protect plants from various environmental stresses (Andrzej Bajguz & Asami, 

2004; Davies, 2004; Fujioka & Sakurai, 1997). In green alga Hydrodictyon reticulatum, 

24-epicastasterone and 28-homocastasterone were identified (Tarakhovskaya et al., 

2007). The chemical structure of Epibrassinolide (EBL), the selected hormone from this 

family for this research is shown in Figure 2-6. 
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Figure 2-6: Structure of Epibrassinolide (EBL) (Fujioka & Sakurai, 1997). 

 

2.4.2 Cytokinins (CKs) 

Cytokinins are adenine derivatives; discovered in the 1950s, which have different effects 

on plant tissues such as, inducing cell division in the presence of Auxin, growth of lateral 

buds, leaf expansion and chloroplast development. Kinetin was the first element to be 

discovered as a cytokinin (Figure 2-7) (Clouse & Sasse, 1998; Davies, 2004). Some 

hormones from this family were found in the extract of fucoid algae from the class of 

Phaeophyceae. Apparently algal cytokinins are generally produced at tRNA degradation 

(Tarakhovskaya et al., 2007). 

 

Figure 2-7: Structure of Kinetin (Davies, 2004). 
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2.4.3 Auxins 

According to studies in the 1960–1970s, Auxins and their inactive analogs were 

recognized in brown ( Macrocystis and Laminaria ), red ( Botryocladia ), and green ( 

Enteromorpha, Chlorella , and Cladophora ) algae and also in cyanobacteria ( 

Oscillatoria ) (Tarakhovskaya et al., 2007). 

Cell enlargement, cell division, vascular tissue differentiation, root initiation, flowering, 

fruit setting and growth are some of Auxin roles in plants. It has been indicated that 

Auxin in the green alga Bryopsis plumosa stimulates rhizoid formation and activates 

growth in some cultured microalgae and cyanobacteria.  The high concentration of Auxin 

has inhibitory effects (Davies, 2004; Tarakhovskaya et al., 2007). The main Auxin in 

most plants is Indole-3-acetic acid (IAA) (Figure 2-8A). Indole 3 butric acid (IBA) and 1-

naphtalenacetic acid (NAA) are two different hormones from Auxin family with similar 

effects (Figure 2-8 B and C). Indole 3 butric acid (IBA) was introduced 50 years ago and 

has been studied widely for optimization of rooting in different plant species while 1-

naphtalenacetic acid (NAA)  is able to release the retarded gamete (Davies, 2004; 

Ludwig-müller, 2000; Tarakhovskaya et al., 2007) 

 

Figure 2-8: Structure of (A) Indole-3-acetic acid (IAA), (B) Indole 3 butric acid 

(IBA) an-taleetic acid (NAA) (Davies, 2004). 
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2.5 Effect of Plant Hormones on the Growth and 
Biomass of Microalgae 

2.5.1 Brassinosteroids (BRs) 

 As mentioned in section 1.3.1, Brassinosteroids are a group of plant hormones with 

stimulating effects on the growth of plants. Bajguz and Czerpak published some articles 

in 1996 and 1998 about the effects of this plant hormone on the growth of Chlorella 

vulgaris. Their results indicated that Chlorella vulgaris growth increased in the presence 

of concentrations of 10
-15

 to 10
-8

 M of BRs while its development cycle decreased. 

Furthermore, cell divisions increased and cell elongation improved with the growth of 

acid secretion. They deduced  the growth stimulation to depend on pH reduction in the 

wall space and thus on acid-induced wall loosening (A Bajguz & Czerpak, 1996; A. 

Bajguz & Czerpak, 1998; Andrzej Bajguz, 2000).  

Bajguz also investigated the effect of BRs on nucleic acids and protein content of 

Chlorella vulgaris and his results showed stimulating influence of this group of hormones 

on the DNA, RNA and protein content of microalgae (Andrzej Bajguz, 2000). His 

research also indicated that Brassinolide (BL)  from Brassinosteroids improved the 

growth with increased cell number even under stress and restored the growth to the level 

of unstressed control (Andrzej Bajguz, 2010, 2011). 

2.5.2 Cytokinins (CKs) 

Piotrowska-Niczyporuk and her colleagues worked on Chlorella vulgaris under the 

influence of different phytohormones. Their results  indicated that Cytokinins mixed with 

heavy metals persuaded the highest increase in the cell number of Chlorella vulgaris 

(Piotrowska-Niczyporuk et al., 2012).  

Ryan W. Hunt and his group’s work showed that in the presence of 0.002 ppm Zeatin and 

0.22 ppm Thidiazuron from Cytokinin family the average productivity of Chlorella 

vulgaris increased 67% and 83% respectively over 10 days compared with control 

samples . Their  results also indicated an approximately 160% increase in the chlorophyll 

productivity 10 days  after adding Thidiazuron (Hunt et al., 2010).  
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The growth of Dunaliella salina, which is a green microalga from phylum of 

Chlorophyta was investigated by Raposo and Morais. Kinetins with concentrations of 0 

to 2 mg/L were mixed with different concentrations of 2, 4-dichlorophenoxyacetic acid. 

They observed significant increase in algal growth in the presence of Kinetin (Filomena 

et al., 2013). 

2.5.3 Auxins 

Auxin is another group of phytohormones that has attracted the attention of researchers to 

study its effect on the growth and biomass production of microalgae. Hunt and his 

colleagues reported that the biomass productivity of Chlorella sorokiniana in the 

presence of 5 ppm 1-naphthaleneacetic acid (NAA) is about 0.042 g L
−1

 day
−1

 compared 

to 0.018 g L
−1

 day
−1

 in the control sample, which shows 133% biomass increase. This 

concentration of NAA showed the highest amount of biomass compared to other plant 

hormones from Auxin, Gibberellin and Cytokinin families. From the biomass data they 

also concluded that the Auxins such as 1-naphthaleneacetic acid (NAA), and indole-3-

butyric acid (IBA) had the highest influence on improving the growth of microalgae 

(Hunt et al., 2010).  

In another research, Hunt also figured out that mixing 1-naphthaleneacetic acid (NAA), 

with ethanol improved the biomass productivity in different strains of microalgae (Hunt 

et al., 2011). 

 Auxins such indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), phenylacetic 

acid (PAA), and indole-3-butyric acid IBA) resulted in weaker biological activities 

compared to Cytokinins under stress conditions and in the presence of heavy metals in a 

research conducted by Piotrowska-Niczyporuk and her  coworkers (Piotrowska-

Niczyporuk et al., 2012). 

Maria Filomena de Jesus Raposo and Rui Manuel Santos Costa de Morais observed that 

the cell number of Haematococcus pluvialis, a freshwater species of Chlorophyta, 

significantly increased after 13 days under Auxin stimulation. When a combination of 

Auxin and 1mg 2, 4-dichlorophenoxyacetic acid was used, the resulting cell number was 
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about 355% more than the control. In addition, the combination of these two chemicals 

significantly reduced the lag phase and therefore, increased the cell number three times 

on the 7th day of culture (Filomena et al., 2013).  

2.6 Glucose Uptake by Microalgae 

Organic carbon loading rate can influence the growth of algae and bacteria directly or 

indirectly. Algae get CO2 from bacterial degradation of organic matter, bicarbonate 

alkalinity and dissolved atmospheric CO2 in water (Mayo & Noike, 1994a).  Martinez et 

al. reported that Chlorella species are able to grow well in the presence of glucose and it 

is the best substrate for algal population while they digest acetate and sucrose. Their 

results also showed that sugars stimulated the growth rate more than acids did and this 

growth stimulation is significant in the presence of glucose. Glucose uptake is faster in 

the light than in the dark (Martinez et al., 1987; Martinez & Orus, 1991). 

Mayo and Noike investigated the effect of different concentrations of glucose (from 25 to 

700 mg/l/d) on the growth behavior of Chlorella vulgaris. Their research indicated that 

algae growth was influenced by the concentration of added glucose. Algae growth rate 

during exponential phase was higher when increasing the glucose concentration. The 

highest concentration of glucose (700 mg/l/d) caused an inhibitory effect on the growth 

of microalgae, which happened because of insufficient dissolved oxygen and volatile 

fatty acids accumulation. On the other hand, bacterial population increased in the 

presence of glucose (Mayo & Noike, 1994a). 

Glycerol is another option as a sole carbon source for microalgae growth. However, 

combination of this substrate with glucose gave the highest growth, biomass content, 

volumetric productivity, accumulation of lipids and soluble carbohydrates as the raw 

materials for biodiesel and bioethanol production in Chlorella vulgaris (Kong et al., 

2013). Liang et al.’s studies also approved that the highest lipid productivity was 

achieved in the presence of glucose and light. Their studies demonstrated that both 

glucose and glycerol have inhibitory effects on Chlorella vulgaris at high concentrations. 

They also reported that  a glucose concentration of 1% showed the fastest growth rate and 

with the addition of 2% glycerol, both the cellular lipid content and lipid productivity 
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increased (Liang et al., 2009). On the other hand, glucose increased the nitrate uptake in 

Chlorella vulgaris, which is the main source of nitrogen for producing and regulating the 

enzymes in plants (Schlee et al., 1985). 

In mixotrophic condition in the presence of glucose and saturating light intensities, the 

Chlorella vulgaris cell size increased due to the higher metabolic activity. On the other 

hand, the volume density of chloroplasts was higher in mixotrophic situation, which was 

influenced by glucose and therefor increased the photosynthetic activity of cells 

(Griffiths, 1963; Martínez et al., 1991). 

2.7 Glucose Analysis 

Griffiths studied the effect of carbohydrate on the cell division of this microalga in 1963 

by adding glucose to Chlorella vulgaris culture.  In order to estimate the amount of 

glucose uptake, he used a colorimetric method. For this purpose, he added 

arsenomolybdate chromogenic reagent with Somogyi's 'Reagent 51' to dry the samples 

and measured the cell size on the haemocytometer slide under microscope (Griffiths, 

1963). 

In order to measure the soluble carbohydrates, Kong et al first extracted the 

carbohydrates by centrifuging, drying and homogenizing the samples and then by using 

Anthrone sulfuric acid method they determined the content of soluble carbohydrate and 

measured the color with a spectrophotometer (Kong et al., 2013). 

Martinez and Orus used Somogyi method for carbohydrate determination in Chlorella 

vulgaris. In this method different Alkaline Copper and Arsenomolybdate color reagents 

were used and the color was measured by a photoelectric colorimeter (Martinez & Orus, 

1991; Nelson, 1944) 

Komor and Tanner invented a new colorimetric method, which used radioactive sugars to 

determine the amount of glucose uptake.  They claimed that in this method no pigments 

were extracted and therefore sugars were directly measured (Gruneberg & Komor, 1976; 

Haass & Tanner, 1974; Komor & Tanner, 1971). 
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The techniques and methods, discussed in the previous sections are all colorimetric 

methods. Most of these methods are time consuming and there is a probability of sample 

loss during extraction. From another point of view, similar physical and chemical 

characteristics of carbohydrates cause difficulties in analyzing this group of chemicals. 

These similarities in chemical and physical properties result in improper chromophore for 

UV detection. Finding a technique with high sensitivity to distinguish these differences in 

a short time and with minimum error is a big concern. Consequently, several HPLC 

(high-pressure liquid chromatography) methods were developed to study carbohydrates 

(Andersen, 2005; Bailey et al., 2012).  

In order to use HPLC, a calibration curve should be prepared with pure carbohydrates. 

The prepared samples for HPLC could be transferred to the instrument for separation and 

quantification of carbohydrates. This method shows high selectivity, accuracy, linearity, 

reliability and sensitivity (Parpinello & Versari, 2000; Wei et al., 2009). 

2.8 Lipid Analysis 

Today, biofuels production from plant oils, animal fats or microalgae is expanding 

quickly. Microalgae are an alternative substitute because of high biomass and high lipid 

content (W. Chen et al., 2011; Y. Feng, Li, & Zhang, 2011; Han et al., 2011).  

The most important fact for biofuel production from microalgae is to choose the optimal 

strain with appropriate lipid yield. Consequently, finding the right and proper strain of 

microalgae and culture condition will require a suitable technique for monitoring the lipid 

content in microalgae. Microalgae contain different kinds of lipids, triglycerides and 

diglycerides, phospholipids and glycolipids, hydrocarbons and other kinds of lipids (Han 

et al., 2011). These lipids play different physiological rules in plants including energy 

storage, structural support as membranes, and intercellular signaling (Yu et al., 2011). 

The metabolic pathways of microalgae to produce a wide variety of biofuels are shown in 

Figure 2-9 (Radakovits et al., 2010). 
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Figure 2-9: Microalgal metabolic pathways that can be leveraged for biofuel 

production. ER, endoplasmic reticulum. Reprinted with permission of ASM  

(Radakovits et al., 2010). 

Species of microalgae used, culture nutrients, environmental and developmental 

conditions in which microalgae cells are cultured and harvested have a direct effect on 

the algal lipid composition (Han et al., 2011). 

Different techniques are used for lipid analysis such as; gravimetric method, staining 

method, HPLC method , Near- infrared (NIR) and Fourier transform infrared (FTIR) and 

GC (Gas chromatography) technique which will be discussed in the following parts (Han 

et al., 2011). 

2.8.1 Gravimetric Method 

Jordi Folch and his colleagues established a standard gravimetric method for the isolation 

and purification of total lipids in tissues in 1956. In this method a chloroform-methanol 

mixture with a ratio of 2:1 (V/V) was used for extracting lipids from the homogenized 

tissue (Floch et al., 1956). This technique is one of the most reliable methods, which is 

still used by many researchers for extracting the total lipid. In 1959 Bligh and Dyer, two 



28 

 

Canadian scientists, tried to modify the Folch method and make it easier. Both fresh and 

frozen samples can be used in this method and this is  what differentiates this method 

from Floch (Bligh & Dyer, 1959b). Iverson et al. compared these two methods  with each 

other and  found that both methods yield similar results in samples  with low lipid 

contents but Folch method is more accurate for  samples with high lipid contents (Iverson 

et al., 2001). 

To increase the efficiency, Long and Abdelkader tried to use a mixture of hexane-

isopropanol instead of chloroform-methanol for extracting lipid from Nannochloropsis 

microalgae. Their data indicated the extract yield is higher with chloroform-methanol 

compared to hexane-isopropanol. In the presence of chloroform-methanol the extract 

yield was about 25-27% while it decreased to 17% when hexane-isopropanol was used 

(Long & Abdelkader, 2011). 

Although gravimetric methods are time consuming and labor-intensive, these methods 

are still used by many researchers especially to compare their results with other 

techniques (W. Chen et al., 2011, 2009; Da Silva et al., 2009; G.-D. Feng et al., 2012; C. 

Gao et al., 2008; Han et al., 2011; Huang et al., 2009; Kim et al., 2012; S. J. Lee et al., 

1998; Mulbry et al., 2009; Salama et al., 2013; Scarsella et al., 2010; Soštarič et al., 

2012).  

2.8.2 Staining Method 

Staining is a common and rapid screening method for lipid quantification, which is done 

in shorter times compared to gravimetric methods (Han et al., 2011). Microalgae, like 

higher plants, produce both neutral and polar lipids. Under unfavorable or restricted 

growth conditions microalgae produce neutral lipids such as triacylglycerol esters (TAG) 

and accumulate them in lipid droplets located in the cytoplasm. However, under 

favorable and unlimited growth conditions, the production of polar lipids such as 

glycolipids and phospholipids increases  which are  stored in chloroplast and cellular 

membranes (Held & Raymond, 2011). 



29 

 

Nile red (9-(Diethylamino)-5H benzo [∞] phenoxa- zin- 5-one) is a lipophilic fluorescent 

dye, which is used to evaluate the neutral lipids in animal cells and microorganisms, such 

as mammalian cells, bacteria, yeasts, zooplankton and microalgae (W. Chen et al., 2009; 

Held & Raymond, 2011). Figure 2-10 shows the chemical structure of Nile red. 

 

Figure 2-10: Chemical structure of Nile red 

Researchers like Chen et al., Feng et al.,  Malapascua et al., Held and Raymond, Cooksey 

et al., Priscu et al. and many others have used Nile red for staining. They added the 

prepared dye to fresh or lyophilized samples and measured the fluorescence intensities 

with a fluorescence spectrophotometer when stable fluorescence readings were obtained 

for each sample (W. Chen et al., 2011, 2009; Cooksey et al., 1987; Da Silva et al., 2009; 

Elsey et al., 2007; G.-D. Feng et al., 2012; C. Gao et al., 2008; Held & Raymond, 2011; 

Priscu et al., 2004; Romel Malapascua et al., 2012) 

In order to improve the results for staining and overcome the thick and rigid cell walls of 

some strains of microalgae such as Pseudochlorococcum species and Scenedesmus 

dimorphus, Chen and his colleagues used microwave to assist Nile red staining method. 

In this method, Nile red dye was added to the samples by using a microwave oven with 

1200W power and maximum 2 minutes for the pretreatment process, and 2 minutes for 

the staining process. Then the fluorescence intensity was measured with a fluorescence 

spectrophotometer. Obtained results suggested microwave-assisted staining method can 

be used as a quantitative procedure to determine neutral lipids in algal cells at different 

stages of the life cycle. This method is rapid and smaller samples are required for 

detection and quantification of neutral lipids in microalgae (W. Chen et al., 2011). 
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After staining neutral lipids in the microalgae cells with the Nile red dye, a bright yellow 

fluorescence color was emitted under the fluorescence microscope which made it easy to 

distinguish the intracellular lipid droplets. The fluorescence  wavelength which is used 

for neutral lipids is under 580 nm and can be distinguished from the fluorescence of 

chlorophyll which fluoresces at 680 nm (Cooksey et al., 1987; Elsey et al., 2007; 

Elumalai et al., 2011; G.-D. Feng et al., 2012; Huang et al., 2009; Lim et al., 2012; Priscu 

et al., 2004; Romel Malapascua et al., 2012). 

BODIPY 505/515 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a- diaza-s-indacene) is 

another lipophilic fluorescent dye which was reported as a vital stain for screening oil 

storage within live algal cells (Brennan et al., 2012; Cooper et al., 2010). 

2.8.3 HPLC Method 

HPLC (high-performance liquid chromatography) is a powerful technique for analyzing 

lipids. This chromatographic technique is suitable for separating, identifying, quantifying 

and purifying the individual components of the mixture (Han et al., 2011). However, a 

considerable sample preparation step is needed for isolating the lipid fractions before 

analyzing (Laurens & Wolfrum, 2011). Jones and her group published a paper in 2012 in 

which they used HPLC for analyzing lipid extraction. In their work, two different 

methods with two different mobile phases were used. Their results revealed that HPLC 

gives quantitative information about all extracted lipid classes  (Jones et al., 2012). 

2.8.4 NIR and FTIR Spectra 

Near- infrared (NIR) and Fourier transform infrared (FTIR) are two new spectroscopy 

methods based on infrared for measuring the lipid content and composition in 

microalgae. In comparison with traditional methods, they are fast, accurate and non-

destructive (Han et al., 2011; Laurens & Wolfrum, 2011).  

2.8.5 GC (Gas Chromatography) 

Another analyzing technique for lipid quantification is GC (Gas chromatography). The 

percentage of different fatty acids present in microalgae could be analyzed with GC. For 

this purpose, an internal standard for quantification of free and bounded fatty acids 
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converted into fatty acid methyl esters (FAMEs) is used (Elumalai et al., 2011; Samori et 

al., 2012). Gas chromatography was used with many researchers for analyzing fatty acid 

(Elumalai et al., 2011; Kim et al., 2012; Mallick et al., 2012; Mansson, 2012; Salama et 

al., 2013; Samori et al., 2012). 
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Chapter 3 

3 Materials and Methods 

3.1 Microalgae Strain 

Chlorella vulgaris UTEX 2714 was used for this study. The strain was obtained through 

the Culture Collection of Algae from the University of Texas at Austin. 

3.2  Growth Media 

3.2.1 Bold’s Basal Medium 

Four culturing the microalgae, a modified version of Bold‘s Basal (BBM) was used. This 

medium contains different micro and macro nutrients and is suitable for green microalgae 

such as Chlorella vulgaris (Andersen, 2005). Stock solutions were prepared according to 

Table 3-1 and kept in the fridge. 

The media were prepared by dissolving the stock solution in distilled water. The pH of 

Bold’s Basal media was adjusted at 6.6. with 1N NaOH. The prepared media were 

sterilized by AMSCO autoclave at a temperature of 121ºC and a pressure of 15 psi above 

the atmospheric pressure for 15 minutes. The sterile media were cooled down to the room 

temperature and allowed to re-equilibrate of inorganic carbon species (Andersen, 2005). 

Table 3-1: Modified Bold's Basal medium (Anderson, 2005) 

Component Stock solution g/L Quantity used (ml) 

NaNO3 25 10 

CaCl2.2H2O 2.5 10 

MgSO4.7H2O 7.5 10 

K2HPO4 7.5 10 

KH2PO4 17.5 10 
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NaCl 2.5 10 

Alkaline EDTA  1 

Na2EDTA.2H2O/EDTA 64  

KOH 31  

Acidified iron solution  1 

FeSO4.7H2O 4.98  

H2SO4  1 

Boron solution  1 

H3BO3 11.42  

Trace metal Solution  1 

ZnSO4.7H2O 8.82  

MnCl2.4H2O 1.44  

CuSO4.5H2O 1.57  

 

3.2.2 Mixotrophic Condition 

Chlorella vulgaris is capable of growing mixotrophic. They can consume both inorganic 

(CO2) and organic carbon substrates simultaneously and grow photoautotrophic and 

heterotrophic at the same time (Bhatnagar et al., 2011). In this study glucose with two 

different concentrations of 5 and 15 g/L was used as a carbon source for the media. 

Glucose, as an organic compound, has a positive effect on the growth rate and lipid 

content of microalgae (Feng et al., 2011; Pirson & Lorenzen, 1965). 
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3.3 Cultivation and Maintenance 

The amount of algae inoculum was about 20% of the medium volume.  125 and 250 ml 

VWR flasks were used for culturing. The flasks were kept in Infors HT Multitron 

standard shaker-incubator at a temperature of 25±1ºC with a speed of 120 RPM and a 

light intensity of 95±5 μmol m
−2

 s
−1

. 

3.3.1 Bioreactor 

Fully controlled Infors HT bench-top bioreactor was used for cultivating large volumes of 

microalgae. The used vessel for this research had a volume of 7.5 liters. pH, dissolved 

oxygen (DO) and optical density (OD) were measured. The operation condition during 

cultivation was set as follows: temperature (T): 25±1ºC, air flow rate: 1.5 L/min , and the 

cultured was agitated at 250 RPM. The harvested algae were centrifuged at 4ºC with a 

speed of 3500 RPM for 20 minutes. Then, the residue was washed 3 times with distilled 

water to eliminate the remaining salt of the medium from wet algal biomass. The wet 

biomass was transferred to the freezing dryer or lyophilization in order to dehydrate and 

dry under vacuum condition. The lyophilized powder was used for lipid extraction. 

 

Figure 3-1: Labfors 5 bioreactor for large volume cultivation 
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3.4 Assay Development 

The possible effect of plant hormones on the growth and lipid production rate of 

microalgae was expected to be of small magnitude. An assay had to be developed that 

could reproducibly detect differences in growth rates lower than 10%. Phototrophic and 

mixtrophic growth was investigated as follows: 

In shake flask: Depending on the size of shake flask 100 to 200 ml media was added to 

each flask. Culturing and maintenance was done according to section 3.3. The optical 

density of each sample was measured once to twice a day. 

In microtiter plate: In each well, 20 µl algae culture was added to 180 µl medium, and 

either kept in Infors- shaker incubator at 25±1ºC with a speed of 120 RPM and a light 

intensity of 95±5 μmol m
−2

 s
−1

 and OD was measured twice a day or incubated in Tecan 

plate reader and optical density was measured every hour. 

3.4.1 Assay Verification: Measuring the Effect of Inhibitor 
Compounds on the Growth Kinetic of Microalgae 

For establishing a technique to detect small differences in growth rate, compounds with 

known inhibiting effects were chosen. For this purpose, Ethanol and DMSO with 

concentrations of 1%, 2%, 3% and 4% (V/V) were added to the media. 

3.5 Plant Hormones 

For this study, five different plant hormones, Epibrassinolide (EBL) from Brassinosteroid 

family, 1-naphtalenacetic acid (NAA), Indole 3 acetic acid (IAA) and Indole 3 butric acid 

(IBA) from Auxin family and Kinetin from Cytokinin family were purchased from 

Sigma-Aldrich. For preparing hormone solutions they were dissolved in suitable solvents. 

Weaker solutions were prepared by serial dilution from stock solutions (Table 3-2).  
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Table 3-2: Family, solvent and working concentration of plant hormones 

Family Hormone Working concentration (M) Solvent 

Cytokinin Kinetin 10-5 to 10-9 M 1N NaOH 

Auxin Indole 3 acetic acid (IAA) 10-5 to 10-9 M Water 

Auxin Indole 3 butric acid (IBA) 10-5 to 10-9 M 1N NaOH 

Auxin 1-naphtalenacetic acid (NAA) 10-5 to 10-9 M 1N NaOH 

Brassinosteroid EpiBrassinolide (EBL) 10-6 to 10-12M Ethanol 

For measuring the biomass concentration of microalgae in the presence of these plant 

hormones, a 96-well plate was used and 200 µl of each sample was pipetted into each 

well. The optical density (OD) was measured with Tecan infinite M1000 plate reader. 

3.6 Analysis of Samples 

3.6.1 Cell Density 

Growth and biomass concentration of Chlorella vulgaris were measured by a 

spectrophotometer. Optical density (OD) was recorded at 684 nm where it shows the 

highest peak for chlorophyll (Held, 2011). The samples were diluted whenever it was 

necessary to give an absorbance in the range 0.1–1.0 nm (Salama et al., 2013). 

3.6.1.1 Spectrophotometer 

Dual beam UV/VIS Spectrophotometer from Thermo Scientific is one of the devices that 

was used for measuring the cell density at 684 A. 1 cm disposable cuvettes were used for 

samples.  

3.6.1.2 Plate Reader 

Tecan infinite M1000 plate reader is another instrument used for measuring the optical 

density (OD) and fluorescent intensity in microscale. It is a multifunctional 

monochromator-based microplate reader with high performance and automatic control 

(Figure 3-2).  
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Figure 3-2: Infinite M1000 with injector box 

 

3.6.1.3 Dry Weight and Biomass Concentration 

Algal biomass concentration is one of the most critically needed measurements in this 

study. For this purpose a calibration curve was prepared as follows: 

1. 15 ml sample was used and prepared twofold serial dilution. 

2. The optical density (OD) was measured with two different devices. 

3. A 4.7 cm glass microfiber filter was dried in the oven at 105 °C for 24 hours till its 

weight became constant. 

4. The dry glass microfiber filter weight was measured (W0). 

5. The samples were filtered and dried in the oven for 24 hours. 

6. The dry glass microfiber filter was weighed with the sample (Ws). 

7. The dry cell weight was calculated using equation 3.1. 

Dry cell weight=Ws-W0                                                                                                                                         (3.1) 
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The dry weight calibration curve, in Appendix 1, was created according to the above-

mentioned procedure and used for measurements. 

The relationship between the optical density and the dry cell weight of samples was 

obtained after an extensive data analysis and is given by equation 3.2 and 3.3 for 

Chlorella vulgaris cuvette (10mm path-length) and 96-well plate (200 µL per well ~ 

3mm path-length) respectively.  

Dry cell weight (g/L) = OD684/ 3.2926                                                                           (3.2) 

Dry cell weight (g/L) = OD684/1.2047                                                                            (3.3) 

3.6.2 Growth Rate Measurement 

The growth of algae during the exponential growth phase can be described by Equation 

(3.4) (Andersen, 2005; Kong et al., 2012; Martinez & Orus, 1991) where x is dry cell 

weight concentration (g/L) at time t and µmax is the specific growth rate (μ, day-1) of 

chlorella vulgaris. This equation can be integrated from t0 to t with x=x0 at t=t0 (3.5) and 

linearized (3.6). The exponential range was determined for each growth experiment and 

the growth rate was calculated via linear regression of 3.6. 

  

  
                                                                                                                          (3.4) 

     
                                                                                                                     (3.5) 

        
 

  
                                                                                                                 (3.6) 

3.6.2.1 Doubling Time 

The doubling time (td) is a period of time required for the algal biomass to double. This 

increase takes place in the exponential phase and is calculated according to the following 

equation (Andersen, 2005; Mulumba & Farag, 2012). 

   
   

 
                                                                                                                          (3.7) 
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3.6.3 Glucose Detecting 

Glucose consumption was measured using HPLC (Agilent 1260, Hi-Plex H column). At 

the beginning, the glucose calibration curve for HPLC was prepared (Appendix 2). Then, 

Chlorella vulgaris was cultivated in the presence of glucose. Different samples were 

taken during microalgae growth till it reached the death phase. The samples were 

prepared and filtered with 0.2 µm syringe filters to remove any remaining particles and 

then transferred to HPLC to measure the glucose consumption during microalgae growth. 

3.6.3.1 High-performance Liquid Chromatography (HPLC) 

High-performance liquid chromatography or HPLC is a chromatographic technique for 

identifying, quantifying or purifying the individual components of the mixture.  

The setup in this study was as follows: 

The filtered samples were transferred to the Agilent HPLC system. 10 µl of the prepared 

sample was injected into the HPLC system, which consisted of an Agilent 1260 Series 

Liquid Chromatograph, equipped with a quaternary pump (G1311B), auto sampler and 

column compartment, refractive index detector, and ChemStation software. The 

separation was done with Hi-Plex H column at a temperature of 65ºC and a flow rate of 

0.6 ml/min. The mobile phase used was milliQ water. The total run time under these 

conditions was 15 min.  
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Figure 3-3: Agilent 1260 HPLC 

 

3.6.4 Lipid Analysis 

In this research, two different methods were used for analyzing lipids in Chlorella 

vulgaris.  

3.6.4.1 Folch Method 

One of the most common gravimetric techniques is called Folch method, which was 

invented by Folch and his colleagues in 1953. In this classic method certain weighed 

samples were homogenized with a chloroform- methanol (2:1) mixture to final dilution 

20 folds of the volume. Then the solution was mixed in a vortex and cells were disrupted 

for 15 minutes in an ultrasonic device (0.5 cycle, amplitude 60%). The samples were kept 

in ice to avoid heating. In the next step, the mixtures were kept in an Infors HT Shaker-

incubator with a speed of 120 RPM and at a temperature of 25ºC overnight. Then the 

samples were filtered and the extracted liquid was mixed with 20% water (v/v), 

centrifuged for 15 minutes at 4ºC and 3500 RPM. In the last step, the lighter phase was 

removed, the solvent was evaporated and the lipid was recovered and weighed (Floch et 

al., 1956). 
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3.6.4.2 Nile-red Staining Method 

In order to determine the amount of neutral lipid in the samples a 96-well plate was used. 

For this purpose, 100 μl of aliquot sample was pipetted into a Corning 3603 black-sided 

clear bottomed plate and 100 μl of the Nile Red dye (1 μg/ml) solution, prepared in 50% 

DMSO, was added. Nile red (9-(Diethylamino)-5H benzo [∞] phenoxa- zin- 5-one) is a 

red phenoxazone and lipid soluble dye which can be used to detect neutral lipids in vivo. 

Although this dye is very poorly fluorescent in aqueous solutions but it is quite photo-

stable and highly fluorescent in non-polar hydrophobic environments. Nile red is 

dissolved in Dimethyl sulfoxide (DMSO) so that it can pass through the thick and rigid 

cell walls in many green algae. To read the fluorescence intensity the plate was kept in 

the Tecan plate reader for 30 minutes. Fluorescence intensities were measured from the 

top using 530 nm excitation and 570 nm emission wavelengths with a Tecan M1000 plate 

reader and the readings were recorded (W. Chen et al., 2011, 2009; Held & Raymond, 

2011). Nile red was purchased from Sigma- Aldrich. 

3.6.4.3 Correlating Fluorescence Data with Gravimetric 
Measurements  

Folch method is a classic gravimetric method that can be used for calculating the total 

lipid content of microalgae. Unfortunately, this method is time consuming and this is one 

of the weaknesses of the technique (Bligh & Dyer, 1959b). On the other hand, the amount 

of neutral lipids can be calculated with Nile-red method which uses Nile-red dye as a 

lipophilic stain. The fluorescence intensity corresponding to the sample and dye could be 

quantified with Tecan M1000 plate reader (Held & Raymond, 2011). One of the goals in 

this study was to find a fast and reliable technique for calculating the total lipid content 

by measuring the fluorescence intensity. 

In the first step, a 4-liter medium with a concentration of 15 g/L glucose was prepared in 

a bioreactor. Chlorella vulgaris was cultivated inside the bioreactor. The cultivation 

process continued until the microalgae reached the stationary phase which contains the 

highest amount of lipid. 20 ml of culture was used for preparing twofold dilution series. 

Absorbance was measured and the neutral lipid was identified with Nile-red staining 



42 

 

method. The rest of the culture was centrifuged at 4ºC with a speed of 3500 RPM for 20 

minutes. The residue was washed 3 times with distilled water in order to remove the 

remaining salt of the medium from algae biomass. The wet biomass was transferred to 

the freezing dryer for dehydration and drying.  In the next step, the total lipid content of 

lyophilized algae powder was calculated using the Folch method. 

With the purpose of calculating the total lipid from neutral lipids by measuring the 

fluorescence intensity of microalgae samples, the obtained data from Folch and Nile-red 

method were correlated. The curve in Figure 3-4 was used as the calibration curve to 

estimate the lipid content in an algae culture using the fluorescence intensity. 

 

Figure 3-4: Amount of total lipid content in algae versus fluorescence intensity from 

Nile-red method (±SD). 

 

3.7 Ionic Liquid Mediated Lipid Extraction 

Most of the chemical reactions have been performed in molecular solvents. Ionic liquids 

(ILs) are a new class of solvents. They are organic salts that typically melt below 100ºC 

and consist entirely of ionic species. They are suitable alternatives for volatile and 

unstable organic solvents due to their high thermal stability and nearly complete non-
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volatility. They are also able to dissolve polar and non-polar organic, inorganic, and 

polymeric compounds and because of that have been given the title green solvents (Earle 

& Seddon, 2000; Kim et al., 2012; S. H. Lee et al., 2009) 

In this stage, each sample vial was loaded with 1g ionic liquid and 0.2g lyophilized algae 

powder. As pretreatment, the mixtures in the vials were mixed in an ultrasonic device 

(0.5 cycle, amplitude 60%) for 30 seconds. The mixtures in vials were stirred at a speed 

of 250 RPM using magnetic bars at 95°C for 3 hours. 

3.7.1 Fractionation 

After cooling the extracted mixtures to room-temperature, each sample was washed three 

times with 1 ml n-Hexane. The n-Hexane extracts were combined, the solvent was 

evaporated and the lipids were weighed. 

3.7.2 Fatty Acid Analysis 

To determine the fatty acid composition of lipids, Gas Chromatography (GC) is used 

(Kim et al., 2012; Lepage & Roy, 1984). Transesterificantion process is required for 

preparing samples before analysis with GC. 

3.7.2.1 Esterification and Transesterification 

In 15 ml pressure tubes, 10 mg of the concentrated lipid solutions was dissolved in 1 ml 

chloroform, 1 ml methanol and 50 µl Methyl nonaclecanoate. Methyl nonaclecanoate 

(C19:0 FAME) played the internal standard role in the samples. The concentration of 

Methyl nonaclecanoate (Internal standard) was 10 g/L which was dissolved in 

chloroform. Then, 16.5 µl sulfuric acid (98%) was added as a catalyst to each sample 

vial. Then vials were sealed properly and kept in a 100°C water bath for 3 hours. In the 

next step, 0.5 ml milliQ water was added to each cooled mixture. Two phases were 

formed after using a vortex equipment for 1 minute.   

3.7.2.2 Fatty acids determination 

The organic phase accumulated at the bottom and was filtered with a 0.45 µm PTFE filter 

and transferred into the GC vials for analysis. 
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3.7.2.3 Gas Chromatography (GC) 

In this study, an Agilent 7890A gas chromatograph was used for identifying and 

quantifying the fatty acids in the organic phase (Figure 3-5).  The Agilent 7890A GC-FID 

used was equipped with a J&W HP-5 column (weak polarity, length: 30 m, diameter: 

0.320 mm, film: 0.25µm) and Helium was applied as the carrier gas. A 2 µl portion of the 

organic phase was injected, and the inlet was maintained at 280°C. The oven was 

maintained at 80°C for 2 min, heated to 140°C at a rate of 20 °C/min, and from 140°C to 

260 °C at a rate of 4 °C/min and then maintained at 260°C for 10 min. Peak detection was 

performed with a flame ionization detector, which was maintained at 280°C. 

 

Figure 3-5: Agilent 7890A gas chromatograph 

 

3.7.3 Analytical and Calculation Method 

Qualitative and quantitative measurements were performed on fatty acids. The qualitative 

measurement was carried out via retention time by employing a FAMEs mix standard as 

the reference (Appendix 3). For quantitative measurements Methyl nonadecanoate was 

used as the internal standard and the amounts of fatty acids were calculated via the 

following equation based on the internal standard principle (Appendix 4): 
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CFAME=(AFAME×Cmethyl nonadecanoate ×fFAME) / A methyl nonadecanoate                                                    (3.6)      

Where CFAME, represents the concentration of the FAME in the sample. AFAME, Cmethyl 

nonadecanoate and fFAME are the FAME’s peak area of FID signal, the concentration of the 

C19:0 FAME, and the coefficient, respectively. Each FAME has its unique fFAME which 

can be calculated by using the peak area of the mixed FAMEs standard and C19:0 FAME 

with known concentrations. Amethyl nonadecanoate represents the C 19:0 FAME’s peak area. 

3.7.4 Experimental Set-up 

In the first experiment, extraction efficiencies of Ionic liquids (ILs) were compared with 

organic electrolyte solution (OES). Because of that, two different ILs; AMIMCl (1-allyl-

3-methylimidazolium chloride) and EMIMCl (1-Ethy-3-methylimidazolium chloride); 

and one OES; Dimethyl sulfoxide (DMSO); were chosen. The chemicals were donated 

form Chinese Academy of Science. 

Then, the extraction efficiencies of ILs were compared to the conventional gravimetric 

method. For this purpose, samples with two different ILs mentioned in the previous 

paragraph were compared with another sample prepared with the extracted lipid using 

Folch method. After sample preparation, the data were analyzed with GC. 

In the final experiment, two different heterogeneous acidic catalysts were used in 

comparison with sulfuric acid during transesterfication. The transesertfication reaction 

can be catalyzed by acids or bases. In order to reduce the cost and recycle the catalyst, 

reduce alkaline waste-water treatment, and interference of free fatty acids and water, 

some new catalysts have been recommended such as heterogeneous catalysis (Zhao & 

Baker, 2013). Amberlyst 36 and 70 are strong acidic catalysist with high selectivity, long 

life time, resistance to superior resistance to thermal, mechanical, and osmotic shock and 

excellent stability, which are suitable for aqueous and non-aqueous media applications 

(Kunda et al., 2011).   
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3.8 Experimental Design and Statistical Analysis 

All samples were prepared in triplicate and the mean values with their standard 

deviations are reported. Each experiment was repeated at least 4 times and the results of 

all repetitions were analyzed by Origion Pro 8.6 and Student T-test. In all cases, 

comparisons that showed a p value  less than 0.05 were considered as significant. 
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Chapter 4 

4 Results and Discussions 

At the beginning of the project, before working with plant hormones, the sensitivity of 

the proposed methodology was tested and validated under different conditions. In the 

next step, the plant hormones were used to investigate their effect on biomass and lipid 

content of microalgae. Finally, the lipid content extracted from Chlorella vulgaris was 

analyzed. 

4.1 Manipulating Algae Growth 

4.1.1 Assay Development 

4.1.1.1 Phototrophic Culture 

In this experiment the prepared culture of Chlorella vulgaris was grown phototrophically 

and its growth rate was measured. According to Figure 4-1 data, there is no exponential 

growth phase, but linear growth instead. This is likely due to external limitations, either 

mass transfer or light. The system was therefore not biochemically limited; hence it would 

not be possible to detect any effects of hormones on growth rate. Therefore mixotrophic 

cultivation was investigated in subsequent experiments. 
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Figure 4-1: Growth curve for Chlorella vulgaris inphotorophic culture. The error 

bars represent standard deviations from the average biomass. 

 

4.1.1.2 Mixotrophic Culture 

In the first step, the growth rate of Chlorella vulgaris in the presence of different 

concentrations of glucose was investigated. The media were prepared in 125 ml flasks 

and glucose was added as a source of organic material. For this purpose, solution with 

glucose concentration of 5 g/L was added to Modified Bold's Basal medium. The optical 

density (OD) of microalgae biomass was measured at 684 nm everyday using a Tecan 

platereader and converted to dry biomass concentration g/L using the calibration curve 

(Appendix1). Results presented in Figure 4-2 demonstrate the effects of glucose on the 

growth curves, kinetics and biomass production of Chlorella vulgaris under mixotrophic 

cultivation. After the lag phase (24 hours), the algal cells entered their logarithmic growth 

phase in mixotrophic condition while phototrophic microalgae grew linearly. The 

maximum biomass content of 1 g/L was obtained in the mixotrophic culture in the 

presence of glucose. The results suggested that using glucose as an organic carbon source 

could increase the growth rate, cell density and dry weight of chlorella vulgaris for 

mixotrophic cultivation (Griffiths, 1963; Kong et al., 2013; Mayo & Noike, 1994b). 
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Figure 4-2: Growth curve for Chlorella vulgaris in the presence of 5 g/L glucose in 

the media. The error bars represent standard deviations from the average biomass. 

Symbols: (◊) Control, (□) 5 g/L glucose 

 

4.1.1.3 Glucose Detection 

Subsequent experiments used chemotropically-growing algae to ensure that the metabolic 

rate was growth limiting, as it was expected this rate could be influenced by hormones. 

Monitoring the glucose uptake by Chlorella vulgaris is completed by high-pressure liquid 

chromatography (HPLC), which is a well-established tool for analyzing carbohydrates 

(Parpinello & Versari, 2000). As shown in Figure 4-3, the algae clearly grew 

exponentially. The maximum specific growth rate (µmax) is 0.072 h
-1

±0.003 and the 

doubling time is about 9.56 hours. At the end of the stationary phase, less than 1g/L 

glucose remained from the total initial amount. The ratio of the biomass produced to the 

amount of substrate consumed is defined as the biomass yield and was calculated 

according to the following equation: 

Biomass yield = (Xt1- Xt0)/ (St0- St1)                                                               Equation 4.1 
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The amount of biomass yield at the end of the exponential phase was about 0.4 g/g. 

According to obtained data, at the end of the growth rate, still some glucose remained 

that showed that Chlorella vulgaris did not consume all the glucose. It can be concluded 

that after microalgae cells stopped growing but kept consuming glucose which indicated 

that they started making lipids, possibly ran out of nitrogen. 

 

Figure 4-3: Kinetic growth and glucose consumption of Chlorella vulgaris in the 

presenceof5g/Lglucose.The(◊)ispresentingthegrowthkineticofChlorella 

vulgaris and(□)isshowingtheglucoseconsumptionbyChlorella vulgaris. 

 

4.1.1.4 Comparing the Mixotrophic Growth of Microalgae in Shake-
flask, 96-well Plate and Bioreactor 

The next step after comparing mixotrophic with phototrophic culture growth was to find 

a suitable scale for culture growth for the rest of the study. Therefore, three different 

scales were used, which will be discussed in the following sections. 

4.1.1.4.1 Mixotrophic Growth in Shake-flask 

Growing Chlorella vulgaris in sake flask is one of the common options used by many 

researchers. In this experiment, a mixotrophic culture was prepared and the flasks were 
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kept in the Infors shaker incubator. The optical densities of samples were measured every 

24 hours and the data were correlated to dry biomass. Figure 4-4 shows the obtained data 

for the growth rate of microalgae in shake flask.   

 

Figure 4-4: Chlorella vulgaris growth rate in shake flask 

 

4.1.1.4.2 Mixotrophic Growth in 96-well Plate 

Using a 96-well plate is another option for growing culture in microscale. The small 

volume of this type of plate, combination of more than one sample in a plate and the 

small space required for incubation are some of the advantages of this culture scale 

compared to other two methods.  Figure 4-5 shows the growth of chlorella vulgaris in 

this scale. The standard deviations are small compared to shake flask and cannot be 

observed in the graph. 
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                      Figure 4-5: Chlorella vulgaris growth rate in 96-well plate 

 

4.1.1.5 Mixotrophic Growth in Bioreactor 

A fully controlled Infors HT bench-top bioreactor was used for mass cultivation of 

Chlorella vulgaris and to determine accurate growth kinetics as a benchmark.  Infors HT 

bioreactors permit a better control of the cultivation conditions compared to flasks (Ugwu 

et al., 2008). A 4-liter Modified Bold's Basal medium was prepared and 5 g/L glucose 

was added to the medium. The bioreactor worked for almost 7 days and the biomass 

concentration of microalgae was measured with the spectrophotometer. It took 2.5 days 

till algae entered the logarithmic growth phase (Figure 4-6).  
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Figure 4-6: Chlorella vulgaris growth rate in Infors HT bioreactors 

Comparing the microalgae growth results of the three different scales suggested that 

bioreactor could produce the highest amount of biomass among all but the maintenance 

and energy cost of bioreactor is higher compared to other scales. On the other hand, the 

standard deviation of the growth rate in plate reader is smaller and the amount of used 

media and culture is less than the other two.  

4.1.2 Assay Validation 

Before working with plant hormones the sensitivity of the proposed methodology was 

tested by investigating the effect of stress on growth rate and biomass concentration. 

Glucose was used as a carbon source and Ethanol and Dimethyl sulfoxide (DMSO) are 

two model compounds, which were used to disturb the system.  

4.1.2.1 Ethanol 

Street and Griffiths and their colleagues studied the effect of ethanol as a carbon source 

on the growth of microalgae. Their studies showed that ethanol as a carbon source  had a 

positive effect on the growth of chlorella vulgaris below 0.1% but at 0.5% inhibited the 

cell division of chlorella vulgaris (El Jay, 1996a; Griffiths et al., 1960; Street, Griffiths et 

al., 1958). In this experiment, glucose was used as a carbon source and ethanol with 
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concentrations in the range 1-4% (v/v) was added. As can be seen in Figure 4-7 Chlorella 

vulgaris has the highest biomass production, the shortest lag phase and the longest 

exponential phase in the presence of glucose without any ethanol. With increasing the 

amount of Ethanol, the biomass production and exponential phase decreased while the 

lag phase increased. On the other hand, with increasing the ethanol concentration the 

specific growth rate (µmax) decreased and the doubling time increased (Table 4-1). 

 

Figure 4-7: Growth kinetics of Chlorella vulgaris in the presence of 5 g/L glucose 

and different concentrations of ethanol (1, 2, 3 and 4% Ethanol (V/V)). Symbols: 

(◊),noEthanol;(□)1%Ethanol;(Δ),2%Ethanol;(X)3%Ethanol;(*),4%Ethanol. 

 

Table 4-1: The specific growth rate (µmax) and the doubling time of Chlorella 

vulgaris in the presence of 5 g/l glucose and different concentrations of ethanol (1, 2, 

3 and 4% Ethanol (V/V)). 

Ethanol Concentration 

(%) 

µmax (d
-1

)±SD Doubling time (d)±SD 

No ethanol        1.50±0.14 0.46±0.06 
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1% ethanol        0.76±0.52 0.91±0.66 

 2% ethanol       0.63±0.08 1.10±0.2 

 3% ethanol       0.54±0.13 1.28±0.46 

 4% ethanol      0.43±0.02 1.61±0.11 

 

4.1.2.2 Dimethyl Sulfoxide (DMSO) 

Dimethyl sulfoxide (DMSO) is one of the organic solvents which is able to impose stress 

on test organisms (El Jay, 1996). For establishing a technique to detect the inhibitory 

effect of DMSO on the growth kinetics of Chlorella vulgaris, two different scale- size 

batch cultures were prepared. The screening test summarized in Figures 4-8 and 4-9 

indicate the growth kinetics and biomass production of Chlorella vulgaris in the shake 

flask and 96-well plate, respectively. These two graphs illustrate the reverse relation 

between increasing DMSO and Chlorella vulgaris biomass. Using 4% DMSO (v/v) 

resulted in the lowest amount of algae biomass while 1% DMSO produced the highest 

biomass concentration and had the least effect on biomass production among all other 

concentrations. Instead, the doubling time and lag phase of microalgae augmented with 

increasing the DMSO concentration but the specific growth rate (µmax) declined (Table 4-

2 and 4-3). As a result, it can be deduced that a DMSO concentration more than 1% 

causes growth inhibition and concentrations above 5% cause total inhibition (El Jay, 

1996; Hess, 1980). 
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Figure 4-8: Effect of different concentrations of DMSO on the growth kinetics of 

Chlorella vulgaris inthepresenceof15g/Lglucoseintheshakeflask.Symbols:(◊),

noDMSO;(□)1%DMSO;(Δ),2%DMSO;(X)3%DMSO;(*),4% DMSO. 

 

Figure 4-9: Effect of different concentrations of DMSO on the growth kinetics of 

Chlorella vulgaris in the presence of 15 g/L glucose in a 96-wellplate.Symbols:(◊),

noDMSO;(□)1%DMSO;(Δ),2%DMSO;(X)3%DMSO;(*),4%DMSO.  
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Table 4-2: Maximum specific growth rate (µmax) and doubling time of Chlorella 

vulgaris in the presence of 15 g/L glucose and 1 to 4% of DMSO. 

DMSO concentration (%) µmax (h
-1

) ± SD Doubling time (h) ± SD 

No DMSO 0.042±0.007 16.64±4 

DMSO 1% 0.037±0.007 18.71±5.2 

DMSO 2% 0.035±0.006 19.86±4.95 

DMSO 3% 0.033±0.001 20.95±0.90 

DMSO 4% 0.022±0.003 31.48±6.19 

 

 

Table 4-3: Maximum specific growth rate (µmax) and doubling time of chlorella 

vulgaris in the presence of 15 g/L glucose and 1 to 4% DMSO in the 96-well plate. 

DMSO concentration (%) µmax (h
-1

) ± SD Doubling time (h)±SD 

No DMSO 0.033±0.001 20.93±0.9 

DMSO 1% 0.03±0.0006 23.51±0.65 

DMSO 2% 0.028±0.0005 24.63±0.63 

DMSO 3% 0.026±0.0005 27.11±0.73 

DMSO 4% 0.016±0.0002 42.55±0.77 

 

 



58 

 

Preliminary conclusion: 

Exponential algae growth can be detected in mixotrophic system. Influences of inhibitory 

compounds on the growth rate can be quantified. The standard deviation of the growth 

rate in shake flasks cultures was ~15%, rendering this method with the employed 

sampling rate not adequate to determine small differences. The standard deviation of the 

growth rate measured in microtiter plates was >3%. This method was therefore employed 

in future experiments. 

4.1.3 Lipid Analysis 

To analyze the lipid contents, two different methods were used. The classic Folch method 

is a gravimetric technique used for extracting the total lipid content of microalgae. Nile-

red method can be used for measuring the neutral lipid in the living organism and Gas 

chromatography can be employed for the separation of lipids. 

4.1.3.1 Folch Method 

The results presented in Table 4-4 show the amount of lipid extracted from Chlorella 

vulgaris using Folch method. In this method more than 16% lipid was extracted from 1 

gram of homogenized lyophilized microalgae biomass with a chloroform- methanol (2:1) 

mixture. The amount of extracted lipid grew linearly with increasing the biomass. 

Table 4-4: Experimental results of lipid extraction with Folch method 

Algae powder (g) Lipid (g)±0.001 

0.5 0.0737 

1 0.1619 

1.5 0.241 

2 0.3249 

3 0.4828 
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4.1.3.2 Nile-red Staining Method 

Nile-red dye integration into Chlorella vulgaris cultures is fast and steady. DMSO affects 

the microalgae cell wall and the dye dissolved in DMSO partitions to the lipid beads 

contained in cells. A fluorescence peak was observed after the addition of dye (Held & 

Raymond, 2011). Comparing the culture with carbon source with the one without carbon 

source (Figure 4-10) shows that in the similar growing conditions and time, the 

microalgae without carbon source couldn’t produce neutral lipids while the other series 

contained 5 g/L glucose as carbon source could produce neutral lipids and therefore 

showed fluorescence peaks after adding Nile-red dye, which could be measured with 

Tecan plate reader. On the other hand, measuring the biomass growth with the 

spectrophotometer and neutral lipid with Nile-red method showed that the total amount of 

neutral lipid increased with increasing the biomass concentration and the highest lipid 

content was obtained during the stationary phase while cells stopped growing and 

producing lipid (Figure 4-11). In this experiment the maximum lipid productivity was 

reached after 11 days. 

 

Figure 4-10: Lipid determination using Nile Red technique for Chlorella vulgaris. 

(□)samplewith5g/Lglucoseascarbonsource;(◊)sample without carbon source. 
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Figure 4-11: Growth kinetic and neutral lipid determination using Nile-red method 

in Chlorella vulgaris inthepresenceof15g/Lglucose.(◊)Growthkineticof

Chlorella vulgaris;(□),amountofneutrallipid. 

 

4.1.4 Effect of Plant Hormones on Chlorella vulgaris 

Chlorella vulgaris was cultivated with different concentrations of five classes of plant 

hormones. The cell density was quantitatively measured by measuring the optical density 

(OD) of each sample and lipid content was estimated at the end of the stationary phase. 

The hormones were prepared according to Table 3-2. The concentration working range of 

Kinetin, Indole 3 acetic acid (IAA), Indole 3 butric acid (IBA), and 1-naphtalenacetic 

acid (NAA) were between 10
-5

-10
-9

 M. No significant effect on growth rate, yield and 

lipid content was found (detailed growth profiles are shown in Appendix 5). The 

normalized data based on the control for final biomass concentration, growth rate and 

lipid content of Chlorella vulgaris in the presence of these hormones is shown in Figure 

4-12, 4-13 and 4-14, respectively. As seen in the Figures, small effects of the hormones 

might exists, however the data is at best inconclusive, as no clear trend with respect to 

hormone concentration can be seen. The applied assay could be refined further to detect 
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such small differences; however the differences are so small that there is no direct interest 

from an application point of view. 

 

 

Figure 4-12: Normalized data for final biomass concentration of Chlorella vulgaris 

based on the control sample in the presence of 1-naphtalenacetic acid (NAA),  Indole 

3 acetic acid (IAA), Indole 3 butric acid (IBA), and Kinetin. 
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Figure 4-13: Normalized data for growth rate of Chlorella vulgaris based on control 

sample in the presence of 1-naphtalenacetic acid (NAA),  Indole 3 acetic acid (IAA), 

Indole 3 butric acid (IBA), and Kinetin. 

 

Figure 4-14: Normalized data for lipid content of Chlorella vulgaris based on control 

sample in the presence of 1-naphtalenacetic acid (NAA),  Indole 3 acetic acid (IAA), 

Indole 3 butric acid (IBA), and Kinetin. 
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4.1.5 Effect of Epibrassinolide (EBL) on the Growth Kinetics and Lipid 
Content of Chlorella vulgaris 

Epibrassinolide (EBL) was chosen from Brassinosteroid families which are steroidal 

compounds and stimulate growth and show different physiological responses at 

nanomolar to micromolar concentrations, (Andrzej Bajguz & Asami, 2004). The biomass 

concentration and growth kinetics data are presented in Figure 4-15. Among different 

concentrations, EBL with concentrations of 10
-12

, 10
-11

 and 10
-10

 M produced more than 

0.7 g/L dry biomass. This is statistically significant compared to the control sample 

which produced 0.34 g/L dry biomass. The lag phase was the same for all concentrations 

during the first 42 hours and after that different behaviors were observed in the 

exponential phase. These variations can be tracked in the specific growth rate (µmax) and 

doubling time of cultures too (Table 4-6).The lipid production of Chlorella vulgaris in 

the presence of this hormone significantly increased compared to the control sample 

without any Epibrassinolide. According to the obtained data, the lowest concentration 

hormone sample (10
-12

 M) which produced the highest final biomass concentration 

produced the most total amount of produced lipid among the other concentrations (Table 

4-7). 

 

Figure 4-15: Effect of different concentrations of Epibrassinolide (EBL) on the 

growth kinetics of Chlorella vulgaris growing on glucose in the 96-well plate. 
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Symbols:(◊),Control;(□),EBL10
-6;

 (Δ),EBL10
-7
;(ˣ),EBL10

-8
; (*), EBL 10

-9
;(○),

EBL 10
-10

; (+), E EBL 10
-11

; (-), EBL 10
-12

. 

Table 4-5: Maximum specific growth rate (µmax) and doubling time of chlorella 

vulgaris in the presence of 15 g/l glucose and 10
-6

 -10
-12

 M Epibrassinolide (EBL) in 

the 96-well plate. 

 Hormone concentration 

(M) 

µmax (h
-1

)±SD Doubling time (h)±SD 

EBL 10
-6

 0.026±0.003 26.53±4.41 

EBL 10
-7

 0.027±0.002 25.32±2.70 

EBL 10
-8

 0.029±0.002 23.75±2.34 

EBL 10
-9

 0.031±0.002 22.45±2.05 

EBL 10
-10

 0.031±0.002 22.31±2.05 

EBL 10
-11

 0.031±0.002 22.17±2.05 

EBL 10
-12

 0.032±0.002 21.80±1.92 

Control 0.023±0.002 30.74±3.73 

 

Table 4-6: The amount of produced lipid (g/L) in Chlorella vulgaris in the presence 

of 10
-6

 -10
-12

 M Epibrassinolide (EBL). 

Hormone concentration 

(M) 

Lipid content (%,)±SD Final biomass (g/L) Total amount of lipid 

produced (mg/L)±SD 

EBL 10-6 26.37±0.002 0.42±0.01 111 

EBL 10-7 30.77±0.003 0.58±0.04 178 
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EBL 10-8 20.64±0.002 0.63±0.03 130 

EBL 10-9 27.8±0.006 0.68±0.01 189 

EBL 10-10 21.93±0.003 0.73±0.01 160 

EBL 10-11 24.11±0.003 0.75±0.03 181 

EBL 10-12 26.9±0.006 0.74±0.03 199 

Control 29.07±0.004 0.34±0.02 99 

 

4.1.6 Preliminary Summary and Conclusion 

An assay was developed to successfully measure small changes in growth-rate and lipid 

contend of microalgae. The assay was verified for known growth inhibitors and 

subsequently used to evaluate the effect of plant hormone on the growth of Chlorella 

vulgaris. Five different hormones representing different hormonal categories were tested 

and only EBL showed significant effects on the tested microalgae. The algae growth rate 

was not significantly affected by EBL; however the right concentration (10
-12

 M) had a 

positive effect on their overall production of algal biomass and therefore on the overall 

amounts of lipids produced. However, the presence of this hormone in the culture could 

increase the total lipid of microalgae.  It was shown that not all glucose was consumed 

without the presence of the hormones (Figure  4-3); hence it was possible to achieve 

higher glucose conversion in the presence of EBL. Bajguz and Czerpak’s work showed 

that, Brassinosteroids hormones are able to increase cell division (A Bajguz & Czerpak, 

1996) and prevent chlorophyll, sugar, and protein loss (Andrzej Bajguz, 2011). 

4.2 Ionic Liquid Mediated Lipid Extraction 

Algae processing and lipid extraction is a very cost-intensive step. An innovative method 

using ionic liquids to fractionate algae biomass was investigated in this thesis. 
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In this section, the effects of different ionic-liquids and catalysts on the extraction 

efficiency were investigated. The goal of ionic liquid mediated lipid extraction is to use 

an ionic liquid that is capable of dissolving carbohydrates, but not able to dissolve lipids. 

Mixing microalgae with such liquids results in disintegration of the cell-wall as structural 

carbohydrates dissolve in the ionic liquid. The lipids form a distinct layer (the removal of 

which can be enhanced with a non-polar solvent such as hexane) that can be decanted. 

The protein fraction typically forms a non-soluble solid fraction.  

4.2.1 Comparing Extraction Efficiencies of ILs and OESs 

In this part two different ILs; AMIMCl (1-allyl-3-methylimidazolium chloride) and 

EMIMCl (1-Ethy-3-methylimidazolium chloride); were compared to IL/DMSO 

(Dimethyl sulfoxide) mixtures (organic electrolyte solution (OES)) (Figure 4-16). The 

experimental set-up was done based on Table 4-8. The rest of the experiments were done 

according to section 3.6.5.3. The amount of FAMEs derived from the extracted algae 

lipids is illustrated in Table 4-9. 

 

Figure 4-16: Chemical structure of AMIMCl (1-allyl-3-methylimidazolium 

chloride), EMIMCl (1-Ethy-3-methylimidazolium chloride); and DMSO (Dimethyl 

sulfoxide) 

As can be seen in Table 4-9, the extraction efficiency of EMIMCl is higher compared to 

AMIMCl. On the other hand, mixing ILs with DMSO improved the extraction of total 

lipid from the samples. This increase is about 2 times when using an equal amount of 
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EMIMCl and DMSO in comparison with using EMIMCl alone. EMIMC1 could extract 

C6:0 and C10:0 while AMIMCl could not extract these fatty acids, which shows the 

better performance of EMIMC1. DMSO has positive effects on the extraction yield of 

lipids from algae.  

Table 4-7:  Experimental set-up for comparing extraction efficiencies of ILs and 

OESs 

Sample Name Algae (g) 

Extraction media (g) 

IL DMSO 

RUN 1 0.2 2g AMIMCl - 

RUN 2 0.2 2g EMIMCl - 

RUN 3 0.2 1.4 g EMIMCl 0.6 

RUN 4 0.2 1g EMIMCl 1 

 

Table 4-8: Amount of FAMEs derived from the extracted algae lipids 

FAME 

Amount of FAMEs derived from the extracted algae fatty acids 

(mg/g D.W.) 

RUN1 RUN2 RUN3 RUN4 

C4:0 0.13 0.4 0.12 0.09 

C6:0 0 0.09 0.01 0.02 
C8:0 0.09 0.03 0 0 

C10:0 0 0.34 0.17 0.31 

C11:0 0.01 0 0.21 0 

C12:0 0 0.01 0 0.02 
C13:0 0 0.04 0.01 0 

C14:0 0.03 0.01 0 0.02 

C14:1 0.02 0.09 0.03 0.11 
C15:1 0.02 0.03 0.02 0.14 

C15:0 0.01 0.03 0.01 0.06 

C16:1 0.15 0.05 0.23 0.1 
C16:0 3.31 11.43 4.32 18.13 

C17:1 0.04 0.07 0.03 0.06 

C17:0 0.03 0.1 0.03 0.16 

C18:3n6 0 0 0 0.03 
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C18:2n6c 2 2.91 1.63 8.32 

C18:1n9/C18:2n6t/C18:3n3 2.97 4.59 2.56 12.66 
C18:1n9t 0.84 2.52 1.4 5.19 

C18:0 0.19 0.66 0.26 0.97 

C20:5n3 0.02 0.01 0 0.06 

C20:4n6 0 0.02 0 0.01 
C20:3n6 0.01 0.01 0 0.04 

C20:2 0.01 0.01 0 0.03 

C20:3n3 0.01 0.01 0.02 0.05 
C20:1n9 0 0.05 0 0.02 

C20:0 0.03 0.1 0.04 0.15 

C21:0 0.13 0.02 0.02 0.02 

C22:6n3 0.28 0.2 0.15 0.11 
C22:2 0 0 0 0 

C22:1n9 0 0 0 0 

C22:0 0.02 0.04 0.02 0.09 
C23:0 0 0.01 0 0.01 

C24:1n9 0 0 0 0.05 

C24:0 0.02 0.07 0.03 0.11 

Total 10.37 23.95 11.33 47.12 

 

4.2.2 Comparison of Different Extractive Efficiencies of AMIMCl, 
EMIMCl and Folch Method 

This section compares the extraction efficiency of two different ILs; AMIMCl (1-allyl-3-

methylimidazolium chloride) and EMIMCl (1-Ethy-3-methylimidazolium chloride) with 

the extracted lipid using Folch method. The samples were prepared according to Table 4-

10 and the results are shown in Table 4-11. 

Table 4-9: Sample preparation procedure for comparing different extractive 

efficiencies of AMIMCl and EMIMCl 

Sample Name Algae (g) Media 

RUN 1 0.2 2g AMIMCl 

RUN 2 0.2 2g EMIMCl 

RUN 3 0.2 Folch method 
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Table 4-10: Amount of FAMEs and their percentages derived from extracted algae 

lipids 

Fatty acids 

Amount of FAMEs derived from extracted algae fatty acids (mg/g D.W.) 

Folch [AMIM]Cl [EMIM]Cl 

C14:1 0.08±0.01 (0.12±0.01%) 0.01±0.01 (0.02±0.03%) - - 

C14:0 0.12±0.01 (0.18±0%) 0.03±0.03 (0.18±0.08%) 0.03±0.01 (0.18±0.02%) 

C15:1 0.02±0 (0.03±0%) 0.02±0.02 (0.09±0.08%) 0.03±0.01 (0.16±0.01%) 

C15:0 0.11±0 (0.16±0.01%) - - - - 

C16:1 0.22±0.01 (0.32±0.01%) 0.16±0.2 (1.63±2.43%) 0.04±0.02 (0.26±0.04%) 

C16:0 20.55±1.12 (30.2±0.33%) 4.51±2.8 (28.84±0.72%) 4.92±1.73 (29.76±0.31%) 

C17:1 0.16±0.01 (0.24±0.01%) 0.09±0.03 (0.79±0.57%) 0.04±0.02 (0.22±0.03%) 

C17:0 0.19±0.01 (0.28±0.01%) 0.04±0.03 (0.24±0.08%) 0.05±0.02 (0.29±0%) 

C18:3n6 0.05±0.01 (0.07±0%) - - - - 

C18:2n6c 18.15±0.83 (26.69±0.51%) 4.19±2.59 (26.8±0.8%) 4.53±1.61 (27.36±0.22%) 

C18:1n9/C18:2n6t/C18:3n3 25.11±1.27 (36.92±0.52%) 5.74±3.57 (36.7±1.12%) 6.2±2.19 (37.5±0.16%) 

C18:1n9t 0.61±0.03 (0.9±0.02%) 0.15±0.09 (0.95±0.02%) 0.15±0.05 (0.91±0.01%) 

C18:0 1.29±0.18 (1.89±0.15%) 0.27±0.19 (1.65±0.19%) 0.24±0.08 (1.48±0.04%) 

C20:4n6 0.04±0.01 (0.05±0.02%) - - - - 

C20:5n3 0.03±0 (0.05±0%) - - - - 

C20:3n6 0.12±0.07 (0.17±0.09%) - - 0.01±0.02 (0.07±0.07%) 

C20:1n9 0.11±0.03 (0.16±0.04%) 0.03±0.05 (0.13±0.16%) 0.02±0.01 (0.12±0.05%) 

C20:2 0.12±0.02 (0.17±0.02%) 0.02±0.02 (0.15±0.06%) 0.03±0.01 (0.16±0.02%) 

C20:3n3 0.03±0.05 (0.04±0.07%) - - - - 

C20:0 0.17±0.01 (0.24±0%) 0.04±0.03 (0.25±0.01%) 0.04±0.01 (0.25±0.01%) 

C21:0 0.03±0.01 (0.05±0.01%) 0.02±0.02 (0.12±0.04%) 0.01±0.01 (0.06±0.06%) 

C22:6n3 0.44±0.52 (0.61±0.68%) 0.16±0.03 (1.17±0.44%) 0.13±0 (0.86±0.26%) 

C22:1n9 0.04±0.06 (0.05±0.08%) 0.01±0.02 (0.05±0.08%) - - 

C22:2 0.01±0.03 (0.02±0.03%) - - - - 
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C22:0 0.07±0.01 (0.09±0.01%) - (0.02±0.03%) - - 

C23:0 0.03±0.05 (0.04±0.07%) 0.01±0.02 (0.05±0.08%) - - 

C24:1n9 0.04±0.07 (0.06±0.1%) - - - - 

C24:0 0.11±0.01 (0.17±0.01%) - - 0.01±0.02 (0.06±0.1%) 

TOTAL 68.07±4.42 (100%) 15.55±9.48 (100%) 16.54±5.82 (100%) 

 

Based on the obtained data, when using the extracted lipid from Folch method, the total 

amount of the extracted fatty acids is higher but there was no significant difference in 

extraction yield observed in the extracted fatty acids from samples with AMIMCl and 

EMIMCl.   

4.2.3 Combining Lipid Extraction and Trans-esterification in a One-

pot Process 

The lipid recovery and trans-esterification are two separate processes in current methods 

for the production of biodiesel from microalgae. Process intensification has the potential 

to substantially reduce operating costs and therefore the possibility to combine ionic 

liquid mediated lipid extraction and trans-esterification into a single-pot process was 

investigated in this thesis. 

Sulfuric acid is the most common used catalyst when converting lipids to actual 

biodiesel. Heterogeneous catalysts have the advantage that they can more easily be 

recycled, and that immersions can be generated in multiphase liquids, while homogenous 

catalysts would selectively partition between two immiscible liquid phases. The use of a 

heterogeneous catalyst might also allow for a simultaneous process combining ionic 

liquid based lipid extraction and trans-esterification in a one-pot process. Therefore two 

different heterogenous acidic catalysts; Amberlyst 36 and Amberlyst 70 (sulfuric acid as 

a control) were investigated and added during the extraction step. 

The catalysts chosen for this work have high catalytic activity and long life time, they 

have high stability and also resistant to thermal and mechanical shocks (Kunda et al., 

2011).  The samples were prepared according to Table 4-12. 
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Table 4-11: Experimental set-up for comparing extraction efficiencies using 

different catalysts 

Sample Name Algae (g) AMIMCl (g) Methanol (g) Catalyst  

RUN A 0.2 2 0.5 0.02g H2SO4 

RUN B 0.2 2 0.5 0.02g Amberlyst 36 

RUN C 0.2 2 0.5 0.02g Amberlyst 70 

The amount of FAMEs was directly analyzed after the extraction without a separate 

trans-esterification step. The results are presented in Table 4-13. When Amberlyst 70 was 

present in the sample more than 10 mg/g FAME was produced while the amount reduced 

to 0.76 mg/g when Amberlyst 36 was added and 1.45 mg/g when sulfuric acid was used 

as a catalyst. When separating extraction and esterification ~ 15 mg/g FAME could be 

recovered with the same ionic liquid (Table  4-10) under similar conditions. Sulfuric acid 

and Amberlyst 36 were not suitable for a combined extraction and trans-esterification 

process, however the initial results with Amberlyst 70 are highly promising and further 

optimization of the operating conditions and possibly catalyst composition might increase 

the overall yield of the process. These preliminary data clearly show that it is possible to 

combine lipid extraction and trans-esterification into a one-pot process, which might be 

able to reduce the overall cost of biodiesel production from micro-algae. Other challenges 

that still have to be overcome are suitable techniques to recycle the ionic liquid and the 

catalyst, which however extents the scope of this thesis. 

Table 4-12: Amount of FAMEs derived from extracted algae lipids 

FAME 

Amount of FAMEs derived from extracted algae fatty acids 

(mg/g  D.W.) 

RUN A RUN B RUN C 

C4:0 0.01 0.01 0.12 

C6:0 0.06 0.02 0 
C8:0 0 0 0.09 

C10:0 0 0 0 

C11:0 0 0 0.01 
C12:0 0 0.01 0 

C13:0 0 0 0 
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C14:0 0.02 0.01 0.03 

C14:1 0.04 0.01 0.02 
C15:1 0 0.04 0.01 

C15:0 0.02 0.03 0.14 

C16:1 0.01 0.04 0.13 

C16:0 0.11 0.04 3.07 
C17:1 0 0 0.03 

C17:0 0 0 0.04 

C18:3n6 0 0.02 0 
C18:2n6c 0.04 0.01 1.84 

C18:1n9/C18:2n6t/C18:3n3 0.07 0.01 2.73 

C18:1n9t 0.31 0.09 0.79 

C18:0 0.01 0.04 0.26 
C20:5n3 0 0 0.02 

C20:4n6 0 0 0 

C20:3n6 0.01 0 0.07 
C20:2 0.02 0 0.23 

C20:3n3 0 0 0.01 

C20:1n9 0 0 0 
C20:0 0 0 0.04 

C21:0 0.05 0.02 0.07 

C22:6n3 0.39 0.17 0.29 

C22:2 0.05 0.04 0 
C22:1n9 0 0.08 0 

C22:0 0.02 0.01 0.03 

C23:0 0 0.01 0 
C24:1n9 0 0.01 0 

C24:0 0.2 0.04 0.04 

Total 1.45 0.76 10.13 
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Chapter 5 

5 Summary and Conclusions 

5.1 Stimulatory or Inhibitory Effect on the Growth of 
Microalgae 

The obtained data show that Chlorella vulgaris (UTEX 2714) can be manipulated with 

plant hormones when grown in mixotrophic condition with glucose as a carbon source. 

Comparing three different scales for growing microalgae showed that microplates were a 

suitable option for culturing microalgae in this project. The stress imposed on Chlorella 

vulgaris (UTEX 2714) by organic solvents such as Ethanol and Dimethyl sulfoxide 

(DMSO) was quantified in order to establish the sensitivity of the applied assay. 

5.2 Effect of Plant Hormones on Chlorella vulgaris 

Studying the effect of five different plant hormones from three families with dissimilar 

concentrations showed that some plant hormones had positive effects on the growth, 

biomass concentration and lipid content of Chlorella vulgaris; however, for the majority 

of investigated hormones no statistical difference was found. Among these five different 

plant hormones, Epibrassinolide (EBL) from the Brassinosteroid family was the only 

hormone that had a strong positive effect on the growth kinetics of Chlorella vulgaris 

compared to the control sample and the lowest concentration of this hormone yielded the 

maximum microalgae biomass concentration. The lipid content in the algae was not 

reduced; hence it also increased the total amount of lipid produced in the system. The 

four other plant hormones, which were used at similar working concentrations, did not 

show excessive changes in biomass concentration and growth kinetics of Chlorella 

vulgaris.  

Due to the cost of plant hormones, their application to increase the biomass and lipid 

content of microalgae in large-scale is very expensive and therefore not likely 

economical. 
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5.3 Lipid Extraction and Analysis 

Increasing the amount of lipid in microalgae is one of the major concerns for producing 

biodiesel. However, lipid extraction from microalgae is a technically challenging 

processing step. In this study, different techniques were used to extract and measure the 

lipid content. 

Lipids from microalgae could successfully be extracted in an ionic liquid mediated 

process with high efficiency and the feasibility of a one-pot process was demonstrated, 

combining lipids extraction and trans-esterification via a heterogeneous catalyst. 

5.4 Recommendations for Future Work 

The work presented in this study was limited to one strain of microalgae and it is entirely 

possible that different species react more favorable to the hormones tested. Future studies 

could expand the number of strains. The genomes of multiple microalgae have recently 

become available and screening this data for possible hormone receptors might give 

additional clues, whether or not hormones might be used successfully.  

The ability to recycle the ionic liquids of the proposed lipid extraction process has to be 

evaluated carefully. This line of work also requires to be extended beyond the strain used 

in this study to show its general applicability. The conditions for the simultaneous 

extraction and trans-esterification have to be optimized (e.g. residence time, catalyst 

loading, temperature) and the long term stability of the catalyst has to be evaluated.  
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Appendices  

Appendix 1: Dry Weight Calibration Curves 

 

Figure A.1: Dry weight calibration curve measuring OD with spectrophotometer 

(D.W=OD684*3.2926) 

 

Figure A.2: Dry weight calibration curve measuring OD with Plate reader 

(D.W=OD684*1.2047) 
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Appendix 2: Glucose Calibration Curve with HPLC 

 

 

Figure A.3: Glucose calibration curve with HPLC (Cg=7E-06 *A) 
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Appendix 3: Chromatograph of 37 FAME Standards and C19:0 as Internal 

Standard 

 

Figure A.4: Chromatograph of 37 FAME standards and C19:0 as internal standard 
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Appendix 4: Quantitative Analysis of 37 FAME Standards 

 

Table A.1: Quantitative analysis of 37 FAME standards 

Peak 

# 

Retentio

n time 
FAME 

Purificati

on % 

Actual 

concentr

ation 

mg/ml 

Average 

of areas 
Stdev f 

1 2.48 C4:0 Butryic Acid Methy Ester 99.9 0.3996 85.302 1.74 2.383488 

2 3.84 C6:0 Caproic Acid Methy Ester 99.9 0.3996 107.277 2.07 1.895246 

3 5.93 C8:0 Caprylic Acid Methy Ester 99.9 0.3996 127.507 2.16 1.59455 

4 8.48 C10:0 Capric Acid Methy Ester 99.9 0.3996 143.495 2.42 1.416888 

5 10.1 C11:0 
Undecanoic Acid Methy 

Ester 
99.5 0.199 74.003 1.24 1.368203 

6 12 C12:0 Lauric Acid Methy Ester 99.8 0.3992 155.339 2.56 1.307545 

7 14.15 C13:0 
Tridecanoic Acid Methy 

Ester 
99.9 0.1998 79.816 1.34 1.273656 

8 16.19 C14:1 
Myristoleic Acid Methy 

Ester 
99.9 0.1998 81.851 1.34 1.24199 

9 16.47 C14:0 Myristic Acid Methy Ester 99.9 0.3996 164.05 2.69 1.239356 

10 18.6 C15:1 
cis-10-Pentadecenoic Acid 

Methy Ester 
99 0.198 82.779 1.36 1.217003 

11 18.88 C15:0 
Pentadecanoic Acid Methy 

Ester 
99.9 0.1998 84.563 1.35 1.202159 

12 20.82 C16:1 
Palmitoleic Acid Methy 

Ester 
99.8 0.1996 86.255 1.41 1.177397 

13 21.32 C16:0 Palmitic Acid Methy Ester 99.7 0.5982 261.645 4.3 1.16327 

14 23.24 C17:1 
cis-10-Heptadecenoic Acid 

Methy Ester 
99.9 0.1998 88.217 1.42 1.152365 

15 23.72 C17:0 
Heptadecanoic Acid 

Methy Ester 
99.9 0.1998 88.633 1.42 1.146956 

16 24.99 
C18:3n

6 
y-Linolenic Acid Methy 
Ester 

99.9 0.1998 87.632 1.42 1.160057 
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17 25.36 
C18:2n

6c 
Linoleic Acid Methy Ester 99.9 0.1998 88.766 1.41 1.145237 

18 25.52 

C18:1n

9c 
Oleic Acid Methy Ester 99.9 0.3996 

355.678 5.67 1.142688 
C18:2n

6t 

Linolelaidic Acid Methy 

Ester 
99.7 0.1994 

C18:3n
3 

a-Linolenic Acid Methy 
Ester 

99.9 0.1998 

19 25.65 
C18:1n

9t 
Elaidic Acid Methy Ester 99.9 0.1998 89.464 1.41 1.136302 

20 26.09 C18:0 Stearic Acid Methy Ester 99.7 0.3988 180.282 2.84 1.12551 

21 28.39 C19:0 

Nonadecanoatic Acid 

Methy Ester( Internal 

standard) 

99.5 0.493719 251.204 3.97 1 

22 29.14 
C20:5n

3 

cis-5,8,11,14,17-

Eicosapentaenoic Acid 

Methy Ester 

99.3 0.1986 86.837 1.36 1.163647 

23 29.29 
C20:4n

6 

Arachidonic Acid Methy 

Ester 
99.9 0.1998 85.332 1.36 1.191325 

24 29.53 
C20:3n

6 

cis-8,11,14-Eicosatrienoic 

Acid Methy Ester 
98.8 0.1976 83.448 1.57 1.204808 

25 29.94 C20:2 
cis-11,14-Eicosadienoic 

Acid Methy Ester 
99.9 0.1998 90.38 1.43 1.124786 

26 30.05 
C20:3n

3 

cis-11,14,17-

Eicosatrienoic Acid Methy 

Ester 

99.9 0.1998 97.936 1.58 1.038006 

27 30.11 
C20:1n

9 

cis-11-Eicosenoic Acid 

Methy Ester 
99.9 0.1998 79.116 2.19 1.284925 

28 30.6 C20:0 
Arachidic Acid Methy 

Ester 
99.9 0.3996 186.203 2.97 1.091907 

29 32.74 C21:0 
Henicosanoic Acid Methy 

Ester 
99.4 0.1988 93.418 1.43 1.082761 

30 33.31 
C22:6n

3 

cis-4,7,10,13,16,19-

Docosahexaenoic Acid 

Methy Ester 

99.9 0.1998 86.441 2.88 1.176041 

31 34.23 C22:2 
cis-13,16-Docosadienoic 

Acid Methy Ester 
99.9 0.1998 91.139 2.69 1.115419 
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32 34.31 
C22:1n

9 
Erucic Acid Methy Ester 99.9 0.1998 92.104 0.52 1.103732 

33 34.81 C22:0 Behenic Acid Methy Ester 99.6 0.3984 188.465 2.93 1.075562 

34 36.96 C23:0 
Tricosanoic Acid Methy 

Ester 
99.9 0.1998 95.036 1.42 1.06968 

35 38.85 
C24:1n

9 

Nervonic Acid Methy 

Ester 
97.4 0.1948 96.304 1.46 1.02918 

36 39.49 C24:0 
Lignoceric Acid Methy 

Ester 
99.9 0.3996 191.348 3.15 1.062547 
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Appendix 5: Effect of Different Plant Hormones on the Growth, Biomass and Lipid 

Content of Chlorella vulgaris 

Effect of 1-Naphtalenacetic Acid (NAA) on the Growth Kinetics and Lipid Content 

of Chlorella vulgaris 

 

Figure A-5: Effect of different concentrations of 1-naphtalenacetic acid (NAA) onthe 

growth kinetics of Chlorella vulgaris growing on glucose in the 96-well plate. 

Symbols:(◊),Control;(□),NAA10
-5
;(Δ),NAA10

-6
;(ˣ),NAA10

-7
; (*), NAA 10

-8
; 

(○),NAA10
-9

. 

Table A-2: Maximum specific growth rate (µmax) and doubling time of chlorella 

vulgaris in the presence of 15 g/L glucose and 10
-5

 -10
-9

 M 1-naphtalenacetic acid 

(NAA) in the 96-well plate. 

 Hormone Concentration 

(M) 

µmax (h
-1

)±SD Doubling time (h)±SD 

NAA 10
-5

 

NAA 10
-6

 

0.033±0.003 

0.033±0.003 

20.99±2.72 

20.83±2.72 
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NAA 10
-7

 0.035±0.003 20.09±2.42 

NAA 10
-8

 0.037±0.003 18.89±2.16 

NAA 10
-9

 0.034±0.004 20.62±3.44 

Control 0.035±0.001 20.00±0.8 

 

Table A-3: The amount of produced lipid (g/L) in Chlorella vulgaris in the presence 

of 10
-5

 -10
-9

 M 1-naphtalenacetic acid (NAA) 

Hormone Concentration(M) Lipid (%, g/g )±SD 

NAA 10
-5

 2.73±0.004 

NAA 10
-6

 2.09±0.004 

NAA 10
-7

 2.03±0.004 

NAA 10
-8

 2.74±0.009 

NAA 10
-9

 2.97±0.007 

Control 2.26±0.004 
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Effect of Indole 3 Acetic Acid (IAA) on the Growth Kinetics and Lipid Content of 

Chlorella vulgaris 

 

Figure A-6: Effect of different concentrations of Indole 3 acetic acid (IAA) on the 

growth kinetics of Chlorella vulgaris growing on glucose in the 96-well plate. 

Symbols:(◊),Control;(□),IAA10
-5
;(Δ),IAA10

-6
;(ˣ),IAA10

-7
; (*), IAA 10

-8
;(○),

IAA 10
-9

. 

 

Table A-4: Maximum specific growth rate (µmax) and doubling time of chlorella 

vulgaris in the presence of 15 g/l glucose and 10
-5

 -10
-9

 M Indole 3 acetic acid (IAA) 

in the 96-well plate. 

 Hormone concentration 

(M) 

µmax (h
-1

)±SD Doubling time (h)±SD 

IAA 10
-5

 0.036±0.003 19.06±2.28 

IAA 10
-6

 0.038±0.004 18.09±2.75 

IAA 10
-7

 0.039±0.005 17.69±3.28 
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IAA 10
-8

 0.035±0.004 19.70±3.24 

IAA 10
-9

 0.037±0.004 18.94±2.90 

Control 0.035±0.001 20.00±0.80 

 

Table A-5: The amount of produced lipid (g/L) in Chlorella vulgaris in the presence 

of 10
-5

 -10
-9

 M Indole 3 acetic acid (IAA) 

Hormone concentration(M) Lipid (%, g/g)±SD 

IAA 10
-5

 1.79±0.004 

IAA 10
-6

 2.13±0.005 

IAA 10
-7

 2.50±0.008 

IAA 10
-8

 2.78±0.007 

IAA 10
-9

 1.79±0.001 

Control 2.26±0.004 
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Effect of Indole 3 Bbutric Acid (IBA) on the Growth Kinetics and Lipid Content of 

Chlorella vulgaris 

 

Figure 0-7: Effect of different concentrations of Indole 3 butric acid (IBA) on the 

growth kinetics of Chlorella vulgaris growing on glucose in the 96-well plate. 

Symbols:(◊),Control;(□),IBA10
-5
;(Δ),IBA10

-6
;(ˣ),IBA10

-7
; (*), IBA 10

-8
;(○),

IBA 10
-9

. 

 

Table A-6: Maximum specific growth rate (µmax) and doubling time of chlorella 

vulgaris in the presence of 15 g/l glucose and 10
-5

 -10
-9

 M Indole 3 butric acid (IBA) 

in the 96-well plate. 

 Hormone concentration 

(M) 

µmax (h
-1

)±SD Doubling time (h)±SD 

IBA 10
-5

 0.041±0.006 16.77±3.58 

IBA 10
-6

 0.038±0.006 18.04±4.18 

IBA 10
-7

 0.036±0.001 19.13±0.76 
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IBA 10
-8

 0.040±0.005 17.41±3.11 

IBA 10
-9

 0.043±0.007 16.04±3.81 

Control 0.035±0.001 20.00±0.80 

 

Table A-7: The amount of produced lipid (g/L) in Chlorella vulgaris in the presence 

of 10
-5

 -10
-9

 M Indole 3 butric acid (IBA) 

Hormone Concentration(M) Lipid (%, g/g)±SD 

IBA 10
-5

 1.76±0.002 

IBA 10
-6

 2.25±0.003 

IBA 10
-7

 2.86±0.006 

IBA 10
-8

 2.19±0.004 

IBA 10
-9

 1.86±0.001 

Control 2.26±0.004 
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Effect of Kinetin on the Growth Kinetics and Lipid Content of Chlorella vulgaris 

 

Figure 0-8: Effect of different concentrations of Kinetin on the growth kinetics of 

Chlorella vulgaris growing on glucose in the 96-wellplate.Symbols:(◊),Control;

(□),Kinetin10
-5
;(Δ),Kinetin10

-6
;(ˣ),Kinetin10

-7
; (*), Kinetin 10

-8
;(○),Kinetin10

-9
 

 

Table 0-8: Maximum specific growth rate (µmax) and doubling time of chlorella 

vulgaris in the presence of 15 g/l glucose and 10
-5

 -10
-9

 M Kinetin in the 96-well 

plate. 

 Hormone concentration 

(M) 

µmax (h
-1

)±SD Doubling time (h)±SD 

Kinetin 10
-5

 0.038±0.007 18.15±4.92 

Kinetin 10
-6

 0.035±0.004 19.99±3.24 

Kinetin 10
-7

 0.035±0.004 19.75±3.24 

kinetin 10
-8

 0.038±0.006 18.39±4.18 
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Kinetin 10
-9

 0.04±0.009 17.29±5.81 

Control 0.035±0.001 20.00±0.80 

 

Table A-9: The amount of produced lipid (g/L) in Chlorella vulgaris in the presence 

of 10
-5

 -10
-9

 M Kinetin. 

Hormone concentration (M) Lipid (%, g/g)±SD 

kinetin10
-5

 2.28±0.006 

Kinetin 10
-6

 2.90±0.006 

Kinetin 10
-7

 2.10±0.001 

Kinetin 10
-8

 2.17±0.005 

Kinetin 10
-9

 2.14±0.004 

Control 2.26±0.004 
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