6 research outputs found
Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe
Exposure to radiofrequency electromagnetic fields (RF-EMF) has rapidly increased and little is known about exposure levels in children. This study describes personal RF-EMF environmental exposure levels from handheld devices and fixed site transmitters in European children, the determinants of this, and the day-to-day and year-to-year repeatability of these exposure levels.; Personal environmental RF-EMF exposure (μW/m; 2; , power flux density) was measured in 529 children (ages 8-18 years) in Denmark, the Netherlands, Slovenia, Switzerland, and Spain using personal portable exposure meters for a period of up to three days between 2014 and 2016, and repeated in a subsample of 28 children one year later. The meters captured 16 frequency bands every 4 s and incorporated a GPS. Activity diaries and questionnaires were used to collect children's location, use of handheld devices, and presence of indoor RF-EMF sources. Six general frequency bands were defined: total, digital enhanced cordless telecommunications (DECT), television and radio antennas (broadcast), mobile phones (uplink), mobile phone base stations (downlink), and Wireless Fidelity (WiFi). We used adjusted mixed effects models with region random effects to estimate associations of handheld device use habits and indoor RF-EMF sources with personal RF-EMF exposure. Day-to-day and year-to-year repeatability of personal RF-EMF exposure were calculated through intraclass correlations (ICC).; Median total personal RF-EMF exposure was 75.5 μW/m; 2; . Downlink was the largest contributor to total exposure (median: 27.2 μW/m; 2; ) followed by broadcast (9.9 μW/m; 2; ). Exposure from uplink (4.7 μW/m; 2; ) was lower. WiFi and DECT contributed very little to exposure levels. Exposure was higher during day (94.2 μW/m; 2; ) than night (23.0 μW/m; 2; ), and slightly higher during weekends than weekdays, although varying across regions. Median exposures were highest while children were outside (157.0 μW/m; 2; ) or traveling (171.3 μW/m; 2; ), and much lower at home (33.0 μW/m; 2; ) or in school (35.1 μW/m; 2; ). Children living in urban environments had higher exposure than children in rural environments. Older children and users of mobile phones had higher uplink exposure but not total exposure, compared to younger children and those that did not use mobile phones. Day-to-day repeatability was moderate to high for most of the general frequency bands (ICCs between 0.43 and 0.85), as well as for total, broadcast, and downlink for the year-to-year repeatability (ICCs between 0.49 and 0.80) in a small subsample.; The largest contributors to total personal environmental RF-EMF exposure were downlink and broadcast, and these exposures showed high repeatability. Urbanicity was the most important determinant of total exposure and mobile phone use was the most important determinant of uplink exposure. It is important to continue evaluating RF-EMF exposure in children as device use habits, exposure levels, and main contributing sources may change
A nationwide questionnaire study of post-acute symptoms and health problems after SARS-CoV-2 infection in Denmark
The health impacts associated with SARS-CoV-2 infection are still not well understood. Here, the authors report findings from a survey of ~150,000 people in Denmark, and identify elevated risks associated with testing positive for SARS-CoV-2 for a range of acute and post-acute symptoms and new diagnoses
An SMS chatbot digital educational program to increase healthy eating behaviors in adolescence: A multifactorial randomized controlled trial among 7,890 participants in the Danish National Birth Cohort.
BackgroundFew cost-effective strategies to shift dietary habits of populations in a healthier direction have been identified. We examined if participating in a chatbot health education program transmitted by Short Messages Service ("SMS-program") could improve adolescent dietary behaviors and body weight trajectories. We also explored possible added effects of maternal or peer involvement.Methods and findingsWe conducted a randomized controlled trial (RCT) among adolescents from the Danish National Birth Cohort (DNBC). Eligible were adolescents who during 2015 to 2016 at age 14 years had completed a questionnaire assessing height, weight, and dietary habits. Two thirds were offered participation in an SMS-program, whereas 1/3 ("non-SMS group") received no offer. The SMS program aimed to improve 3 key dietary intake behaviors: sugar-sweetened beverages (SSBs), fruit and vegetables (FV), and fish. The offered programs had 3 factorially randomized schemes; the aims of these were to test effect of asking the mother or a friend to also participate in the health promotion program, and to test the effect of a 4-week individually tailored SMS program against the full 12-week SMS program targeting all 3 dietary factors. Height and weight and intakes of SSB, FV, and fish were assessed twice by a smartphone-based abbreviated dietary questionnaire completed at 6 months (m) and 18 m follow-up. Main outcome measures were (1) body mass index (BMI) z-score; and (2) an abbreviated Healthy Eating Index (mini-HEI, 1 m window, as mean of z-scores for SSB, FV, and fish). Among the 7,890 randomized adolescents, 5,260 were assigned to any SMS program; 63% (3,338) joined the offered program. Among the 7,890 randomized, 74% (5,853) and 68% (5,370) responded to follow-ups at 6 m and 18 m, respectively. Effects were estimated by intention-to-treat (ITT) analyses and inverse probability weighted per-protocol (IPW-PP) analyses excluding adolescents who did not join the program. Mean (standard deviation (SD)) mini-HEI at baseline, 6 m and 18 m was -0.01 (0.64), 0.01 (0.59), and -0.01 (0.59), respectively. In ITT-analyses, no effects were observed, at any time point, in those who had received any SMS program compared to the non-SMS group, on BMI z-score (6 m: -0.010 [95% confidence interval (CI) -0.035, 0.015]; p = 0.442, 18 m: 0.002 [95% CI -0.029, 0.033]; p = 0.901) or mini-HEI (6 m: 0.016 [95% CI -0.011, 0.043]; p = 0.253, 18m: -0.016 [95% CI -0.045, 0.013]; p = 0.286). In IPW-PP analyses, at 6 m, a small decrease in BMI z-score (-0.030 [95% CI -0.057, -0.003]; p = 0.032) was observed, whereas no significant effect was observed in mini-HEI (0.027 [95% CI -0.002, 0.056]; p = 0.072), among those who had received any SMS program compared to the non-SMS group. At 18 m, no associations were observed (BMI z-score: -0.006 [95% CI -0.039, 0.027]; p = 0.724, and mini-HEI: -0.005 [95% CI -0.036, 0.026]; p = 0.755). The main limitations of the study were that DNBC participants, though derived from the general population, tend to have higher socioeconomic status than average, and that outcome measures were self-reported.ConclusionsIn this study, a chatbot health education program delivered through an SMS program had no effect on dietary habits or weight trajectories in ITT analyses. However, IPW-PP-analyses, based on those 63% who had joined the offered SMS program, suggested modest improvements in weight development at 6 m, which had faded at 18 m. Future research should focus on developing gender-specific messaging programs including "booster" messages to obtain sustained engagement.Clinical trial registrationClinicalTrials.gov Identifier: NCT02809196 https://clinicaltrials.gov/study/NCT02809196
Personal exposure to radio-frequency electromagnetic fields in Europe: Is there a generation gap?
Background: Exposure to radiofrequency electromagnetic fields (RF-EMF) from mobile communication technologies is changing rapidly. To characterize sources and associated variability, we studied the differences and correlations in exposure patterns between children aged 8 to 18 and their parents, over the course of the day, by age, by activity pattern, and for different metrics of exposure. Methods: Using portable RF-EMF measurement devices, we collected simultaneous real-time personal measurements of RF-EMF over 24 to 72 h in 294 parent-child pairs from Denmark, the Netherlands, Slovenia, Switzerland, and Spain. The devices measured the power flux density (mW/m2) in 16 different frequency bands every 4 s, and activity diary Apps kept by the participants were used to collect time-activity information in real-time. We analyzed their exposures by activity, for the different source constituents of exposure: downlink (radiation emitted from mobile phone base stations), uplink (transmission from phone to base station), broadcast, DECT (digital enhanced cordless telecommunications) and Wi-Fi. We looked at the correlations between parents and children overall, during day (06:00-22.00) and night (22:00-06:00) and while spending time at home. Results: The mean of time-weighted average personal exposures was 0.16 mW/m2 for children and 0.15 mW/m2 for parents, on average predominantly originating from downlink sources (47% for children and 45% for parents), followed by uplink (18% and 27% respectively) and broadcast (25% and 19%). On average, exposure for downlink and uplink were highest during the day, and for Wi-Fi and DECT during the evening. Exposure during activities where most of the time is spent (home, school and work) was relatively low whereas exposure during travel and outside activities was higher. Exposure to uplink increased with age among young people, while DECT decreased slightly. Exposure to downlink, broadcast, and Wi-Fi showed no obvious trend with age. We found that exposure to total RF-EMF is correlated among children and their parents (Rspearman = 0.45), especially while at home (0.62) and during the night (0.60). Correlations were higher for environmental sources such as downlink (0.57) and broadcast (0.62) than for usage-related exposures such as uplink (0.29). Conclusion: The generation gap between children and their parents is mostly evident in uplink exposure, due to more and longer uplink and cordless phone calls among parents, and their tendency to spend slightly more time in activities with higher environmental RF-EMF exposure, such as travel. Despite these differences in personal behavior, exposure to RF-EMF is moderately correlated between children and their parents, especially exposures resulting from environmental RF-EMF sources.INMA, Spain: This study was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041; PI041436; PI081151 incl. FEDER funds; PI12/01890 incl. FEDER funds; CP13/00054 incl. FEDER funds; MS13/00054), CIBERESP, Generalitat de Catalunya-CIRIT 1999SGR 00241, Generalitat de Catalunya-AGAUR (2009 SGR 501, 2014 SGR 822), Fundació La marató de TV3 (090430), Spanish Ministry of Economy and Competitiveness (SAF2012-32991 incl. FEDER funds), Agence Nationale de Securite Sanitaire de l'Alimentation de l'Environnement et du Travail (1262C0010), European Commission (261357, 308333 and 603794). ISGlobal is a member of the CERCA Program, Generalitat de Catalunya
Personal exposure to radio-frequency electromagnetic fields in Europe: Is there a generation gap?
Background: Exposure to radiofrequency electromagnetic fields (RF-EMF) from mobile communication technologies is changing rapidly. To characterize sources and associated variability, we studied the differences and correlations in exposure patterns between children aged 8 to 18 and their parents, over the course of the day, by age, by activity pattern, and for different metrics of exposure. Methods: Using portable RF-EMF measurement devices, we collected simultaneous real-time personal measurements of RF-EMF over 24 to 72 h in 294 parent-child pairs from Denmark, the Netherlands, Slovenia, Switzerland, and Spain. The devices measured the power flux density (mW/m2) in 16 different frequency bands every 4 s, and activity diary Apps kept by the participants were used to collect time-activity information in real-time. We analyzed their exposures by activity, for the different source constituents of exposure: downlink (radiation emitted from mobile phone base stations), uplink (transmission from phone to base station), broadcast, DECT (digital enhanced cordless telecommunications) and Wi-Fi. We looked at the correlations between parents and children overall, during day (06:00-22.00) and night (22:00-06:00) and while spending time at home. Results: The mean of time-weighted average personal exposures was 0.16 mW/m2 for children and 0.15 mW/m2 for parents, on average predominantly originating from downlink sources (47% for children and 45% for parents), followed by uplink (18% and 27% respectively) and broadcast (25% and 19%). On average, exposure for downlink and uplink were highest during the day, and for Wi-Fi and DECT during the evening. Exposure during activities where most of the time is spent (home, school and work) was relatively low whereas exposure during travel and outside activities was higher. Exposure to uplink increased with age among young people, while DECT decreased slightly. Exposure to downlink, broadcast, and Wi-Fi showed no obvious trend with age. We found that exposure to total RF-EMF is correlated among children and their parents (Rspearman = 0.45), especially while at home (0.62) and during the night (0.60). Correlations were higher for environmental sources such as downlink (0.57) and broadcast (0.62) than for usage-related exposures such as uplink (0.29). Conclusion: The generation gap between children and their parents is mostly evident in uplink exposure, due to more and longer uplink and cordless phone calls among parents, and their tendency to spend slightly more time in activities with higher environmental RF-EMF exposure, such as travel. Despite these differences in personal behavior, exposure to RF-EMF is moderately correlated between children and their parents, especially exposures resulting from environmental RF-EMF sources.INMA, Spain: This study was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041; PI041436; PI081151 incl. FEDER funds; PI12/01890 incl. FEDER funds; CP13/00054 incl. FEDER funds; MS13/00054), CIBERESP, Generalitat de Catalunya-CIRIT 1999SGR 00241, Generalitat de Catalunya-AGAUR (2009 SGR 501, 2014 SGR 822), Fundació La marató de TV3 (090430), Spanish Ministry of Economy and Competitiveness (SAF2012-32991 incl. FEDER funds), Agence Nationale de Securite Sanitaire de l'Alimentation de l'Environnement et du Travail (1262C0010), European Commission (261357, 308333 and 603794). ISGlobal is a member of the CERCA Program, Generalitat de Catalunya
Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe
BACKGROUND: Exposure to radiofrequency electromagnetic fields (RF-EMF) has rapidly increased and little is known about exposure levels in children. This study describes personal RF-EMF environmental exposure levels from handheld devices and fixed site transmitters in European children, the determinants of this, and the day-to-day and year-to-year repeatability of these exposure levels. METHODS: Personal environmental RF-EMF exposure (μW/m2, power flux density) was measured in 529 children (ages 8-18 years) in Denmark, the Netherlands, Slovenia, Switzerland, and Spain using personal portable exposure meters for a period of up to three days between 2014 and 2016, and repeated in a subsample of 28 children one year later. The meters captured 16 frequency bands every 4 s and incorporated a GPS. Activity diaries and questionnaires were used to collect children's location, use of handheld devices, and presence of indoor RF-EMF sources. Six general frequency bands were defined: total, digital enhanced cordless telecommunications (DECT), television and radio antennas (broadcast), mobile phones (uplink), mobile phone base stations (downlink), and Wireless Fidelity (WiFi). We used adjusted mixed effects models with region random effects to estimate associations of handheld device use habits and indoor RF-EMF sources with personal RF-EMF exposure. Day-to-day and year-to-year repeatability of personal RF-EMF exposure were calculated through intraclass correlations (ICC). RESULTS: Median total personal RF-EMF exposure was 75.5 μW/m2. Downlink was the largest contributor to total exposure (median: 27.2 μW/m2) followed by broadcast (9.9 μW/m2). Exposure from uplink (4.7 μW/m2) was lower. WiFi and DECT contributed very little to exposure levels. Exposure was higher during day (94.2 μW/m2) than night (23.0 μW/m2), and slightly higher during weekends than weekdays, although varying across regions. Median exposures were highest while children were outside (157.0 μW/m2) or traveling (171.3 μW/m2), and much lower at home (33.0 μW/m2) or in school (35.1 μW/m2). Children living in urban environments had higher exposure than children in rural environments. Older children and users of mobile phones had higher uplink exposure but not total exposure, compared to younger children and those that did not use mobile phones. Day-to-day repeatability was moderate to high for most of the general frequency bands (ICCs between 0.43 and 0.85), as well as for total, broadcast, and downlink for the year-to-year repeatability (ICCs between 0.49 and 0.80) in a small subsample. CONCLUSION: The largest contributors to total personal environmental RF-EMF exposure were downlink and broadcast, and these exposures showed high repeatability. Urbanicity was the most important determinant of total exposure and mobile phone use was the most important determinant of uplink exposure. It is important to continue evaluating RF-EMF exposure in children as device use habits, exposure levels, and main contributing sources may change