336 research outputs found
Experimental Data on Stagnation-Point Gas Injection Cooling on a Hemisphere-Cone in a Hypersonic Arc Tunnel
Exploratory tests were made to determine the reduction of heat transfer resulting from ejection of gases at the stagnation point on a hemisphere-cone at a nominal Mach number of about 9 and at stagnation enthalpies up to 1600 BTU per pound. Helium, nitrogen, and argon gases were used as coolants. The ratio of mass flow of coolant to the mass flow of air swept out by the model projected area was less than 0.20 in all cases. The experimental heat-transfer data were normalized by the calculated stagnation-point values based on test conditions in the tunnel and are presented as a function of the surface distance from the stagnation point. The variation of shock standoff distances with mass flow and volumetric flow of the gaseous ejectants is presented along with photographs of the luminous flow field of the model during tests
Recommended from our members
Handheld cellular telephone use and risk of brain cancer
Context. A relative paucity of data exist on the possible health effects of using cellular telephones. Objective. To test the hypothesis that using handheld cellular telephones is related to the risk of primary brain cancer. Design and Setting. Case-control study conducted in 5 US academic medical centers between 1994 and 1998 using a structured questionnaire. Patients. A total of 469 men and women aged 18 to 80 years with primary brain cancer and 422 matched controls without brain cancer. Main Outcome Measure. Risk of brain cancer compared by use of handheld cellular telephones, in hours per month and years of use. Results. The median monthly hours of use were 2.5 for cases and 2.2 for controls. Compared with patients who never used handheld cellular telephones, the multivariate odds ratio (OR) associated with regular past or current use was 0.85 (95% confidence interval [CI], 0.6-1.2). The OR for infrequent users (10.1 h/mo) was 0.7 (95% CI, 0.3-1.4). The mean duration of use was 2.8 years for cases and 2.7 years for controls; no association with brain cancer was observed according to duration of use (P=.54). In cases, cerebral tumors occurred more frequently on the same side of the head where cellular telephones had been used (26 vs 15 cases; P=.06), but in the cases with temporal lobe cancer a greater proportion of tumors occurred in the contralateral than ipsilateral side (9 vs 5 cases; P=.33). The OR was less than 1.0 for all histologic categories of brain cancer except for uncommon neuroepitheliomatous cancers (OR, 2.1; 95% CI, 0.9-4.7). Conclusions. Our data suggest that use of handheld cellular telephones is not associated with risk of brain cancer, but further studies are needed to account for longer induction periods, especially for slow-growing tumors wit
Estimation of interdomain flexibility of N-terminus of factor H using residual dipolar couplings
Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e. FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC datasets, collected in media containing magnetically aligned bicelles (disk-like particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC datasets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of < 40 °. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3), could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex
The structure of SgrAI bound to DNA; recognition of an 8 base pair target
The three-dimensional X-ray crystal structure of the ‘rare cutting’ type II restriction endonuclease SgrAI bound to cognate DNA is presented. SgrAI forms a dimer bound to one duplex of DNA. Two Ca2+ bind in the enzyme active site, with one ion at the interface between the protein and DNA, and the second bound distal from the DNA. These sites are differentially occupied by Mn2+, with strong binding at the protein–DNA interface, but only partial occupancy of the distal site. The DNA remains uncleaved in the structures from crystals grown in the presence of either divalent cation. The structure of the dimer of SgrAI is similar to those of Cfr10I, Bse634I and NgoMIV, however no tetrameric structure of SgrAI is observed. DNA contacts to the central CCGG base pairs of the SgrAI canonical target sequence (CR|CCGGYG, | marks the site of cleavage) are found to be very similar to those in the NgoMIV/DNA structure (target sequence G|CCGGC). Specificity at the degenerate YR base pairs of the SgrAI sequence may occur via indirect readout using DNA distortion. Recognition of the outer GC base pairs occurs through a single contact to the G from an arginine side chain located in a region unique to SgrAI
A Cross-Sectional Study of HPV Vaccine Acceptability in Gaborone, Botswana
Background
Cervical cancer is the most common cancer among women in Botswana and elsewhere in Sub-Saharan Africa. We sought to examine whether HPV vaccine is acceptable among parents in Botswana, which recently licensed the vaccine to prevent cervical cancer. Methods and Findings
We conducted a cross-sectional survey in 2009, around the time the vaccine was first licensed, with adults recruited in general medicine and HIV clinics in Gaborone, the capital of Botswana. Although only 9% (32/376) of respondents had heard of HPV vaccine prior to the survey, 88% (329/376) said they definitely will have their adolescent daughters receive HPV vaccine. Most respondents would get the vaccine for their daughters at a public or community clinic (42%) or a gynecology or obstetrician\u27s office (39%), and 74% would get it for a daughter if it were available at her school. Respondents were more likely to say that they definitely will get HPV vaccine for their daughters if they had less education (OR = 0.20, 95% CI = 0.07–0.58) or lived more than 30 kilometers from the capital, Gaborone (OR = 2.29, 95% CI = 1.06–4.93). Other correlates of acceptability were expecting to be involved in the decision to get HPV vaccine, thinking the vaccine would be hard to obtain, and perceiving greater severity of HPV-related diseases. Conclusions
HPV vaccination of adolescent girls would be highly acceptable if the vaccine became widely available to the daughters of healthcare seeking parents in Gaborone, Botswana. Potential HPV vaccination campaigns should provide more information about HPV and the vaccine as well as work to minimize barriers
Evidence for a Two-Metal-Ion Mechanism in the Cytidyltransferase KdsB, an Enzyme Involved in Lipopolysaccharide Biosynthesis
Lipopolysaccharide (LPS) is located on the surface of Gram-negative bacteria and is responsible for maintaining outer membrane stability, which is a prerequisite for cell survival. Furthermore, it represents an important barrier against hostile environmental factors such as antimicrobial peptides and the complement cascade during Gram-negative infections. The sugar 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an integral part of LPS and plays a key role in LPS functionality. Prior to its incorporation into the LPS molecule, Kdo has to be activated by the CMP-Kdo synthetase (CKS). Based on the presence of a single Mg2+ ion in the active site, detailed models of the reaction mechanism of CKS have been developed previously. Recently, a two-metal-ion hypothesis suggested the involvement of two Mg2+ ions in Kdo activation. To further investigate the mechanistic aspects of Kdo activation, we kinetically characterized the CKS from the hyperthermophilic organism Aquifex aeolicus. In addition, we determined the crystal structure of this enzyme at a resolution of 2.10 Å and provide evidence that two Mg2+ ions are part of the active site of the enzyme
Assessing the application of miscible CO2 flooding in oil reservoirs: a case study from Pakistan
Miscible carbon dioxide (CO2) flooding has been recognized as a promising approach to enhance the recovery of oil reservoirs. However, depending on the injection strategy and rock/fluid characteristics, efficiency of the miscible CO2flooding varies from reservoir to reservoir. Although, many studies have been carried out to evaluate the performance of the miscible CO2flooding, a specific strategy which can be strictly followed for a hydrocarbon reservoir has not been established yet. The aim of this study is to assess one of Pakistan’s oil reservoirs for miscible CO2flooding by applying a modified screening criterion and numerical modeling. As such, the most recent miscible CO2screening criteria were modified, and a numerical modeling was applied on the prospective reservoir. Based on the results obtained, South oil reservoir (S3) is chosen for a detailed assessment of miscible CO2flooding. It was also found that implementation of CO2water-alternating gas (CO2-WAG) injection at early stages of production can increase the production life of the reservoir
The Hexameric Structures of Human Heat Shock Protein 90
The human 90-kDa heat shock protein (HSP90) functions as a dimeric molecular chaperone. HSP90 identified on the cell surface has been found to play a crucial role in cancer invasion and metastasis, and has become a validated anti-cancer target for drug development. It has been shown to self-assemble into oligomers upon heat shock or divalent cations treatment, but the functional role of the oligomeric states in the chaperone cycle is not fully understood.Here we report the crystal structure of a truncated HSP90 that contains the middle segment and the carboxy-terminal domain, termed MC-HSP90. The structure reveals an architecture with triangular bipyramid geometry, in which the building block of the hexameric assembly is a dimer. In solution, MC-HSP90 exists in three major oligomer states, namely dimer, tetramer and hexamer, which were elucidated by size exclusion chromatography and analytical ultracentrifugation. The newly discovered HSP90 isoform HSP90N that lacks the N-terminal ATPase domain also exhibited similar oligomerization states as did MC-HSP90.While lacking the ATPase domain, both MC-HSP90 and HSP90N can self-assemble into a hexameric structure, spontaneously. The crystal structure of MC-HSP90 reveals that, in addition to the C-terminal dimerization domain, the residue W320 in the M domain plays a critical role in its oligomerization. This study not only demonstrates how the human MC-HSP90 forms a hexamer, but also justifies the similar formation of HSP90N by using 3D modeling analysis
- …