1,301 research outputs found

    The Steady State Distribution of the Master Equation

    Full text link
    The steady states of the master equation are investigated. We give two expressions for the steady state distribution of the master equation a la the Zubarev-McLennan steady state distribution, i.e., the exact expression and an expression near equilibrium. The latter expression obtained is consistent with recent attempt of constructing steady state theormodynamics.Comment: 6 pages, No figures. A mistake was correcte

    Humidity-induced phase transitions of ferric sulfate minerals studied by in situ and ex situ X-ray diffraction

    Get PDF
    Phases encountered in the hydration of monoclinic and trigonal anhydrous Fe2(SO4)3 and evaporation of Fe2(SO4)3 solutions at room temperature were determined using in situ and ex situ X-ray diffraction (XRD) under dynamic relative humidity (RH) control at room temperature (22–25 °C). Both monoclinic and trigonal forms of Fe2(SO4)3 remain anhydrous at 11% RH or below, and undergo the following phase evolution sequence: anhydrous Fe2(SO4)3 → (ferricopiapite, rhomboclase) → kornelite → paracoquimbite at RH between 33 and 53% as a function of time. Evaporation of aqueous Fe2(SO4)3 solutions at 40% < RH < 60% results in precipitation of ferricopiapite and rhomboclase during evaporation, followed by a transition to kornelite and then paracoquimbite. Evaporation at RH < 33% produced an amorphous ferric-sulfate phase. The presence of some iron sulfate hydrates and their stability under varying RH are not only determined by the final humidity level, but also the intermediate stages and hydration history (i.e., either ferricopiapite or paracoquimbite can be a stable phase at 62% RH depending on the hydration history). The sensitivity to humidity change and path-dependent transitions of ferric sulfates make them potentially valuable indicators of paleo-environmental conditions and past water activity on Mars. The phase relationships reported herein can help in understanding the diagenesis of ferric sulfate minerals, and are applicable to geochemical modeling of mineral solubility in multi-component systems, an endeavor hindered by the need for fundamental laboratory studies of iron sulfate hydrates

    Mass transport of an impurity in a strongly sheared granular gas

    Full text link
    Transport coefficients associated with the mass flux of an impurity immersed in a granular gas under simple shear flow are determined from the inelastic Boltzmann equation. A normal solution is obtained via a Chapman-Enskog-like expansion around a local shear flow distribution that retains all the hydrodynamic orders in the shear rate. Due to the anisotropy induced by the shear flow, tensorial quantities are required to describe the diffusion process instead of the conventional scalar coefficients. The mass flux is determined to first order in the deviations of the hydrodynamic fields from their values in the reference state. The corresponding transport coefficients are given in terms of the solutions of a set of coupled linear integral equations, which are approximately solved by considering the leading terms in a Sonine polynomial expansion. The results show that the deviation of these generalized coefficients from their elastic forms is in general quite important, even for moderate dissipation.Comment: 6 figure

    The implications of primate behavioral flexibility for sustainable human–primate coexistence in anthropogenic habitats

    Get PDF
    People are an inescapable aspect of most environments inhabited by nonhuman primates today. Consequently, interest has grown in how primates adjust their behavior to live in anthropogenic habitats. However, our understanding of primate behavioral flexibility and the degree to which it will enable primates to survive alongside people in the long term remains limited. This Special Issue brings together a collection of papers that extend our knowledge of this subject. In this introduction, we first review the literature to identify past and present trends in research and then introduce the contributions to this Special Issue. Our literature review confirms that publications on primate behavior in anthropogenic habitats, including interactions with people, increased markedly since the 2000s. Publications concern a diversity of primates but include only 17% of currently recognized species, with certain primates overrepresented in studies, e.g., chimpanzees and macaques. Primates exhibit behavioral flexibility in anthropogenic habitats in various ways, most commonly documented as dietary adjustments, i.e., incorporation of human foods including agricultural crops and provisioned items, and as differences in activity, ranging, grouping patterns, and social organization, associated with changing anthropogenic factors. Publications are more likely to include information on negative rather than positive or neutral interactions between humans and primates. The contributions to this Special Issue include both empirical research and reviews that examine various aspects of the human–primate interface. Collectively, they show that primate behavior in shared landscapes does not always conflict with human interests, and demonstrate the value of examining behavior from a cost–benefit perspective without making prior assumptions concerning the nature of interactions. Careful interdisciplinary research has the potential to greatly improve our understanding of the complexities of human–primate interactions, and is crucial for identifying appropriate mechanisms to enable sustainable human–primate coexistence in the 21st century and beyond

    Integration through transients for Brownian particles under steady shear

    Full text link
    Starting from the microscopic Smoluchowski equation for interacting Brownian particles under stationary shearing, exact expressions for shear-dependent steady-state averages, correlation and structure functions, and susceptibilities are obtained, which take the form of generalized Green-Kubo relations. They require integration of transient dynamics. Equations of motion with memory effects for transient density fluctuation functions are derived from the same microscopic starting point. We argue that the derived formal expressions provide useful starting points for approximations in order to describe the stationary non-equilibrium state of steadily sheared dense colloidal dispersions.Comment: 17 pages, Submitted to J. Phys.: Condens. Matter; revised version with minor correction

    Mental health research projects: a practical integration of mental health into a medical curriculum

    Get PDF
    Abstract of a paper presented at the 65th Annual National Conference of Indian Psychiatric Society, Bangalor, 10-13 Jan, 2013. Aims aJld Objectives: The University of Wollongong (UoW) graduate-entry medical course embeds research and critical analysis within the curriculum, concluding with students undertaking a regional/ nlrsl conmlUnity-based ro earch project. Students are encouraged to design a research project of interest to them and the local community. T.his Indy analyzed whether conducting research projects enhanced learning/understanding about rural/regional mental health issues amongst UoW medical students

    Towards a developmental state? Provincial economic policy in South Africa

    Get PDF
    This paper explores the meaning of the developmental state for spatial economic policy in South Africa. Two main questions are addressed: do provincial governments have a role to play in promoting economic prosperity, and to what extent do current provincial policies possess the attributes of a developmental state? These attributes are defined as the ability to plan longer term, to focus key partners on a common agenda, and to mobilise state resources to build productive capabilities. The paper argues that the developmental state must harness the power of government at every level to ensure that each part of the country develops to its potential. However, current provincial capacity is uneven, and weakest where support is needed most. Many provinces seem to have partial strategies and lack the wherewithal for sustained implementation. Coordination across government appears to be poor. The paper concludes by suggesting ways provincial policies could be strengthened

    Phase-space approach to dynamical density functional theory

    Full text link
    We consider a system of interacting particles subjected to Langevin inertial dynamics and derive the governing time-dependent equation for the one-body density. We show that, after suitable truncations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, and a multiple time scale analysis, we obtain a self-consistent equation involving only the one-body density. This study extends to arbitrary dimensions previous work on a one-dimensional fluid and highlights the subtelties of kinetic theory in the derivation of dynamical density functional theory

    A note on the Landauer principle in quantum statistical mechanics

    Full text link
    The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than kTlog2kTlog 2. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauer's bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared

    Current partition: Nonequilibrium Green's function Approach

    Get PDF
    We present a solution to the problem of AC current partition in a multi-probe mesoscopic conductor within the nonequilibrium Green's function formalism. This allows the derivation of dynamic conductance which is appropriate for nonequilibrium situations and which satisfies the current conservation and gauge invariance requirements. This formalism presents a significant generalization to previous theory: (i) there is no limit in the frequency, and (ii) it allows detailed treatments of interactions in the mesoscopic region. The formalism is applied to calculate dynamic conductance of tunneling structures with and without assuming wideband limit.Comment: 4 pages, 3 figure
    • …
    corecore