5,390 research outputs found
Testing quantised inertia on galactic scales
Galaxies and galaxy clusters have rotational velocities apparently too fast
to allow them to be gravitationally bound by their visible matter. This has
been attributed to the presence of invisible (dark) matter, but so far this has
not been directly detected. Here, it is shown that a new model that modifies
inertial mass by assuming it is caused by Unruh radiation, which is subject to
a Hubble-scale (Theta) Casimir effect predicts the rotational velocity (v) to
be: v^4=2GMc^2/Theta (the Tully-Fisher relation) where G is the gravitational
constant, M is the baryonic mass and c is the speed of light. The model
predicts the outer rotational velocity of dwarf and disk galaxies, and galaxy
clusters, within error bars, without dark matter or adjustable parameters, and
makes a prediction that local accelerations should remain above 2c^2/Theta at a
galaxy's edge.Comment: 7 pages, 1 figure. Accepted for publication in Astrophysics and Space
Science on 27/7/201
Phase Diagram of the 1D Kondo Lattice Model
We determine the boundary of the fully polarized ferromagnetic ground state
in the one dimensional Kondo lattice model at partial conduction electron band
filling by using a newly developed infinite size DMRG method which conserves
the total spin quantum number. The obtained paramagnetic to ferromagnetic phase
boundary is below for the whole range of band filling. By this
we solve the controversy in the phase diagram over the extent of the
ferromagnetic region close to half filling.Comment: 6 pages, 4 EPS figures. Presented at MOS9
Exploring local quantum many-body relaxation by atoms in optical superlattices
We establish a setting - atoms in optical superlattices with period 2 - in
which one can experimentally probe signatures of the process of local
relaxation and apparent thermalization in non-equilibrium dynamics without the
need of addressing single sites. This opens up a way to explore the convergence
of subsystems to maximum entropy states in quenched quantum many-body systems
with present technology. Remarkably, the emergence of thermal states does not
follow from a coupling to an environment, but is a result of the complex
non-equilibrium dynamics in closed systems. We explore ways of measuring the
relevant signatures of thermalization in this analogue quantum simulation of a
relaxation process, exploiting the possibilities offered by optical
superlattices.Comment: 4 pages, 3 figures, version to published in Physical Review Letter
Applying matrix product operators to model systems with long-range interactions
An algorithm is presented which computes a translationally invariant matrix
product state approximation of the ground state of an infinite 1D system; it
does this by embedding sites into an approximation of the infinite
``environment'' of the chain, allowing the sites to relax, and then merging
them with the environment in order to refine the approximation. By making use
of matrix product operators, our approach is able to directly model any
long-range interaction that can be systematically approximated by a series of
decaying exponentials. We apply our techniques to compute the ground state of
the Haldane-Shastry model and present results.Comment: 7 pages, 3 figures; manuscript has been expanded and restructured in
order to improve presentation of the algorith
Vector chiral order in frustrated spin chains
By means of a numerical analysis using a non-Abelian symmetry realization of
the density matrix renormalization group, we study the behavior of vector
chirality correlations in isotropic frustrated chains of spin S=1 and S=1/2,
subject to a strong external magnetic field. It is shown that the field induces
a phase with spontaneously broken chiral symmetry, in line with earlier
theoretical predictions. We present results on the field dependence of the
order parameter and the critical exponents.Comment: 8 pages, 9 figure
Magnetism in the dilute Kondo lattice model
The one dimensional dilute Kondo lattice model is investigated by means of
bosonization for different dilution patterns of the array of impurity spins.
The physical picture is very different if a commensurate or incommensurate
doping of the impurity spins is considered. For the commensurate case, the
obtained phase diagram is verified using a non-Abelian density-matrix
renormalization-group algorithm. The paramagnetic phase widens at the expense
of the ferromagnetic phase as the -spins are diluted. For the incommensurate
case, antiferromagnetism is found at low doping, which distinguishes the dilute
Kondo lattice model from the standard Kondo lattice model.Comment: 11 pages, 2 figure
Resuming the dialogue: rhizomic actualisations
Since 1996, we have organised conferences on the discourse of the arts. The conferences have, in turn, led to a journal entitled Double Dialogues, the first of which was in hard copy under the sole editorship of Ann McCulloch and has been distributed internationally. After innumerable obstacles, we decided to situate articles, essays, exhibitions, and the like, from both these conferences and contributions related to our themes from interested parties, on-line. This refereed electronic journal deals with the discourse and practice of the arts, ranging across the visual arts, film, multi-media, dance, music, creative writing and theatre. Our decision to do this is manifold, but one of the reasons has been determined by our wish to become part of a global debate. We recognise that our interests are ones that are being experienced within academic institutions and art-centres world-wide. Before exploring the central theme of this Issue, perhaps we ought to contextualise it in terms of a journey over the last six years and into the future.<br /
De Chirico and Walker in light of Nietzsche and Guattari: the enigma of partial bodies in illogical spaces
If one concedes that the Freudian unconscious is inseparable from a society attached to its past, for example, its phallocentric traditions, Guattari’s alternative model dealing with "the production of subjectivity" offers a new perspective (1995: 11). From this vantage point, it is possible to map the way "every individual and social group" models the creation of subjectivity, a subjectivity "composed of cognitive references as well as mythical, ritual and symptomatological references" (1995: 11)
From density-matrix renormalization group to matrix product states
In this paper we give an introduction to the numerical density matrix
renormalization group (DMRG) algorithm, from the perspective of the more
general matrix product state (MPS) formulation. We cover in detail the
differences between the original DMRG formulation and the MPS approach,
demonstrating the additional flexibility that arises from constructing both the
wavefunction and the Hamiltonian in MPS form. We also show how to make use of
global symmetries, for both the Abelian and non-Abelian cases.Comment: Numerous small changes and clarifications, added a figur
- …