
Vector chiral order in frustrated spin chains

I. P. McCulloch,* R. Kube, M. Kurz, A. Kleine, U. Schollwöck, and A. K. Kolezhuk†

Institut für Theoretische Physik C, RWTH Aachen, D-52056 Aachen, Germany
�Received 18 December 2007; published 6 March 2008�

By means of a numerical analysis using a non-Abelian symmetry realization of the density matrix renor-
malization group, we study the behavior of vector chirality correlations in isotropic frustrated chains of spin
S=1 and S=1 /2, subject to a strong external magnetic field. It is shown that the field induces a phase with
spontaneously broken chiral symmetry, in line with earlier theoretical predictions. We present results on the
field dependence of the order parameter and the critical exponents.

DOI: 10.1103/PhysRevB.77.094404 PACS number�s�: 75.10.Pq, 75.40.Cx, 75.40.Mg

I. INTRODUCTION

The so-called vector chirality in quantum spin chains is
defined as the vector product of two adjacent spins along the
chain:

�n = �Sn � Sn+1� .

In a chirally ordered state, spins have a tendency to “rotate”
in some preferred plane in a certain preferred direction
�clockwise or counterclockwise�. Chiral phases in quantum
spin chains were predicted long ago1,2 and have attracted
considerable interest recently3–8 after they have been found
numerically in frustrated chains with easy-plane
anisotropy.4,7 As noted by Villain,1 the chiral order should
survive at finite temperature in the presence of three-
dimensional interactions without transforming into a usual
helical long-range order: At finite temperatures, the chirality
correlation length is much larger than the spin correlation
length. So with decreasing temperature, chiral order should
set in before spin order does. There are experimental indica-
tions that the chiral order may exist in the quasi-one-
dimensional anisotropic organic magnet Gd�hfac�3NITiPr.9

The projection of the vector chirality � on the direction of
the applied field could be experimentally detected with the
help of polarized neutrons.10

In all known cases of numerically confirmed existence of
chiral states, the preferred plane for spin rotation is chosen
by some anisotropy of the easy-plane type, and the chiral
phase disappears in the isotropic limit.7 Recently, it has been
predicted8 that in isotropic frustrated chains, the chiral phase
may appear in the presence of an external magnetic field,
strong enough to close the spectral gap. In such a state, the
system approximately decouples into a gapped antisymmet-
ric sector and a gapless symmetric sector, the latter being
described by the Tomonaga-Luttinger liquid �TLL�. An alter-
native two-component TLL scenario11–13 assumes the exis-
tence of the Tomonaga-Luttinger liquid in both sectors and
implies the absence of the chiral order.

The phase diagrams of the antiferromagnetic zigzag spin
chains in applied field have been studied numerically in Ref.
13 for S=1 /2 and in Ref. 14 for S=1. However, both works
focused only on the magnetization process and did not check
the presence of the chiral order. The theoretical analysis of
Ref. 8 involves some uncontrolled approximations �mean-
field decoupling of the “twist” term�, and, to our knowledge,

the chiral order in isotropic spin chains has never been di-
rectly probed numerically �the only exception being the cal-
culation of short-range correlations in a S=1 /2 chain15�, so
the question of the correct scenario remains unsettled.

Several materials are known which realize isotropic zig-
zag spin chains;16 among them, �N2H5�CuCl3 can be viewed
as a promising candidate for experimental studies, since its
small exchange constants make it feasible to reach magnetic
fields comparable to the gap.

In this paper, we present a study of vector chirality corre-
lations in the isotropic S=1 and S=1 /2 zigzag chains in the
presence of applied magnetic field, using a powerful non-
Abelian symmetry realization17 of the density matrix renor-
malization group �DMRG� technique18,19 in its matrix prod-
uct state formulation.20 It is demonstrated that the chiral
order does exist in the high-field phase, both for S=1 and
S=1 /2, and the behavior of chiral correlations is in a quali-
tative agreement with the expectations following from the
theoretical analysis of Ref. 8. This implies that a chiral one-
component Tomonaga-Luttinger liquid scenario is realized.

II. THEORETICAL ESTIMATES

We consider the model of a frustrated antiferromagnetic
spin chain, defined by the Hamiltonian

H = J1�
n

Sn · Sn+1 + J2�
n

Sn · Sn+2 − H�
n

Sn
z , �1�

where Sn are spin-S operators at the nth site, J1�0 and
J2�0 are the nearest- and next-nearest-neighbor exchange
constants, respectively, and H is the external magnetic field,
assumed to be applied along the z axis.

In the case of S=1, at H=0, the ground state is always
gapped: For small frustration parameter ��J2 /J1, one re-
mains in the Haldane phase characterized by the long-range
string order, while for ���c�0.75, there is a first-order
transition into another gapped state, the so-called double-
Haldane phase where the string order disappears with a finite
jump, giving way to a more complicated hidden order.21

When the applied field exceeds the critical value H=Hc �Hc
is obviously equal to the gap at H=0�, the system acquires
finite magnetization. There is another special field value, the
saturation field Hs, above which the spins are fully polarized.
In the S=1 /2 case, the ground state at H=0 is gapless for
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���c�0.24,22,23 and ���c corresponds to a gapped
dimerized phase.24

We are interested in the properties of the partially magne-
tized state in the field range Hc�H�Hs, and we assume that
� is large enough to make the system gapped at H=0. In the
limit ��1, the system may be viewed as two weakly
coupled chains. A single S=1 /2 chain in external field has
been extensively studied,25–27 as well as its S=1
counterpart.28–31 Above the first critical field Hc1, the low-
energy physics of a single chain is well described in terms of
the effective Tomonaga-Luttinger liquid �TLL� theory, de-
scribed by the Hamiltonian

HTL	�,�
 =
v
2
� dx� 1

K
��x��2 + K��x��2
 . �2�

Here, K is the so-called TLL parameter, v	J2 is the Fermi
velocity, � is the bosonic field �compactified by the condi-
tion ���+�
�, and � is its dual satisfying the commutation
relations 	��x� ,��y�
= i��y−x�, where ��x� is the Heaviside
function.

In the continuum limit, the lattice spin operators both for
S=1 /2 and S=1 can be represented8,30 through the bosonic
field � and its dual �:

Sa
z�xa� = M +

2
�


�x�a�xa� + A3 sin�kFxa + �4
�a�xa�� + �¯� ,

Sa
+�xa� = ei
x/2ei�
�a�xa��A1 + A2 sin„kFxa + �4
�a�xa�…�

+ �¯� . �3�

Here, a=1,2 labels the two chains, the space coordinate x is
defined along the zigzag path as shown in Fig. 1, the lattice
sites correspond to x1,2=x�

1
2 , M is the ground state magne-

tization per spin in units of saturation �which corresponds to
the filling factor in the TLL model�, kF=
M for S=1, and
kF=
�1+M� /2 for S=1 /2, and Ai are nonuniversal ampli-
tudes. In the case of S=1, the dots denote additional opera-
tors which correspond to massive fields connected to the
high-energy Sz=0,−1 magnon branches of the Haldane
chain.30

The theory parameters M, K, and v should be understood
as functions of the field H; for S=1, their behavior can be
extracted from the comparison of the TLL theory predictions
with the numerical results,29,32 while for S=1 /2, it is avail-
able from the exact Bethe ansatz solution.25

For S=1, the most important feature28,29,32 is that gener-
ally the TLL parameter K�1 at H�Hc1 nonmonotonically
depends on H and tends to the free fermion value K=1 both
at the first critical field H=Hc1 and at the saturation field

H=Hs1. In contrast to that, for S=1 /2, the TLL parameter
K�1 and is a monotonically increasing function of the
applied field.25,26

For the description of weakly coupled chains, it is conve-
nient to introduce the symmetric and antisymmetric combi-
nations of the bosonic fields

�
 = ��1 
 �2�/�2, �
 = ��1 
 �2�/�2.

The longitudinal �SzSz� part of the zigzag exchange, apart
from producing terms of the type ��x�1���x�2� which lead to
a splitting of the TLL parameter values for the symmetric
and antisymmetric sectors,

K
 � K	1 
 2K/�
v��
−1/2,

v
 � v	1 
 2K/�
v��
1/2, �4�

yields another contribution proportional to cos	�8
�−−kF
.
The scaling dimension of this latter perturbation is 2K−. In
the case of S=1, it is irrelevant since K�1 and so can be
neglected; in contrast to that, for S= 1

2 chain, K�1, and this
operator is a relevant perturbation. Thus, as pointed out in
Ref. 8, for S=1 the leading contribution to the interaction is
given by the “twist term” produced by the transversal part of
the zigzag exchange. For the S=1 /2, the twist term competes
with a relevant operator and can only win if K−�H� is above
a certain critical value Kc; for K�Kc, the so-called even-odd
phase is realized, whose dominant correlations are of the
spin-nematic �or XY2 in the nomenclature of Ref. 33� type. A
characteristic feature of the even-odd phase13 is the �Sz=2
step in the magnetization curve Stot

z �H�. The even-odd phase
has been also observed34 in zigzag chains with ferromagnetic
nearest-neighbor exchange.

In the chirally ordered phase, the twist term is the most
relevant perturbation, so one obtains the same effective
Hamiltonian for S=1 as well as for S=1 /2:

Heff = �
�=


HTL	��,��
 + Hint,

Hint = g� dx sin��2
�−���x�+� . �5�

Mean-field decoupling of the twist term in the spirit of Ref. 3
then leads to the conclusion8 that both ��x�+� and
�sin��2
�−�� become nonzero, and the antisymmetric sector
becomes gapped.

One should mention that the above description makes
sense only when we are far enough from the critical fields Hc
or Hs: The theory is applicable only up to the energies of the
order of the bandwidth v, and v→0 if H→Hc ,Hs. Formulas
�4� indicate that the system becomes unstable against phase
separation35 as soon as v�2K / �
��.

The components of the chirality operator � can be ex-
pressed through bosonic fields. The longitudinal part of the
chirality can be obtained in the following form:

x2=x+1/2

x1=x−1/2
1

2

x

FIG. 1. A zigzag spin chain and the notation adopted in Eq.
�3�.
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�z�x� = sin��2
�−��A1
2 −

�
A1�2

4
��x�+�2

+
A2

2

2
cos��8
�+ + 2kFx�
 + �¯� , �6�

where dots denote massive fields 	the most important
contribution of that sort is proportional to �−1�x cos��2
�−�
���x�+�
 and operators with higher scaling dimensions. The
leading contribution to the long-distance correlator is thus
given by

��z�x��z�0�� → �0
2�1 +

C1

x4 +
C2 cos�2kFx�

x4K+
�, x � � ,

�7�

where � is the largest correlation length determined by the
gap in the antisymmetric sector. 	For S=1, there is also an-

other, much smaller, characteristic correlation length �̃,
which is determined by the high-lying excitation branches
that are neglected in the bosonization formulas �3�; it roughly
corresponds to the correlation length of the Haldane chain at
zero field, typically a few lattice constants.
 For S=1, al-
though K�1 for Hc�H�Hs, the parameter K+, according
to Eq. �4�, is renormalized to smaller values when the zigzag
coupling is switched on, so the two decaying contributions in
Eq. �7� may be competing with each other. In the S=1 /2
chain, the oscillating contribution always has the slowest de-
cay since K+�K�1.

In a similar way, one can obtain the transversal chirality
component

�+�x� = 2A1M sin��
/2�−�exp� i
x

2
+ i�


2
�+
 + �¯� .

�8�

It is easy to see that the leading term in �+�x� is simply
proportional to S1

+−S2
+. The leading contribution to the cor-

responding asymptotic correlator is slowly decaying,

��+�x��−�0�� 	 A1
2 M2

x1/�4K+� exp�iQx�, x � � , �9�

and incommensurate, with the wave vector given by

Q =



2
+�


2
��x�+� .

The above expressions �7� and �9� are expected to be valid
in the limit ��1, and for H not very close to the critical
fields Hc, Hs �in the vicinity of the critical field, the
bosonization approach becomes hardly applicable since the
effective bandwidth goes to zero�. Close to the saturation
field Hs, a large-S analysis8 allows mapping the system to an
effective model of two bosonic species with repulsive inter-
action, which, condense driven by the magnetic field, play
the role of the chemical potential. The repulsion turns out to
be strong enough to satisfy the phase separation condition, so
only one of the species condenses, and the other condensate
is depleted. So, one deals, in fact, with the one-component
pseudocondensate whose physics is again described by a

�one-component� TLL. The asymptotic form of the longitu-
dinal chirality correlator for H close to Hs has been presented
in Ref. 8:

��z�x��z�0�� → �0
2 −

C

x2 , �10�

with �0
2	 �Hs−H�. The leading contribution to the transversal

chirality is proportional to the bosonic field itself, so its cor-
relator takes the following asymptotic form:

��+�x��−�0�� →
C�

x1/�2K��
eiQ�x. �11�

Here, K� is another TLL parameter, the characteristic wave
vector Q� is given by the expression for the pitch of the
classical helical state,

Q� = 
 	
 − arccos�1/4��
 , �12�

and the amplitude C�	 �Hs−H�1/2−1/�4K��. As the field ap-
proaches the saturation point, H→Hs, the value of K� tends
to 1, so the amplitude C� vanishes.

III. RESULTS OF NUMERICAL ANALYSIS

We have studied the S=1 and S=1 /2 zigzag chain model
given by Eq. �1� using the DMRG method in its matrix prod-
uct state formulation, making full use of the non-Abelian
SU�2� symmetry.

For a full description of the DMRG technique,18 we refer
the reader to Ref. 19. As discussed in Ref. 20, the formula-
tion in terms of matrix product states is very convenient but,
for the calculation of ground states, does not lead to substan-
tially better results. The decisive point17,20 is the use of the
non-Abelian symmetry SU�2� instead of the Abelian U�1�.
While the magnetic field H breaks SU�2� symmetry, the fact
that the Zeeman energy term commutes with the rest of the
Hamiltonian makes it possible to take the influence of the
magnetic field into account by calculating the ground state of
the model in a sector with the given total spin Stot. The ad-
vantage of the method lies in a drastic reduction of the num-
ber of states m which is necessary to describe the system,
because non-Abelian symmetry allows one to calculate using
representatives of groups of states of the same total spin:
Essentially, one treats the multiplet of states of the same total
spin as a single representative state. Comparing to the Abe-
lian version of the method which only uses the U�1� symme-
try, the improvement in efficiency can be several orders of
magnitude, depending on the problem. For the zero-field
ground state of the zigzag chain, the effective improvement
in the number of states is a factor of �3 �for S=1 /2� or �4
�for S=1�, leading to a reduction in the computational effort
by factors of �27 and �64, respectively. The relative effi-
ciency decreases as the magnetic field is increased, but even
for rather high fields, the improvement is appreciable.

A slight disadvantage is that the non-Abelian method al-
lows us to compute only reduced matrix elements �in the
sense of the Wigner-Eckart theorem�. In our case, since the
chirality is a vector, the correlator that is by far the easiest to
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calculate is the rotationally invariant scalar product,

F�n − n�� = ���n� · ��n��� , �13�

which is a mixture of the longitudinal and transversal
contributions.37 This obviously makes the analysis of the nu-
merical data more difficult: In our case, from the theoretical
analysis, it follows that the longitudinal chirality correlations
��z�x��z�0�� decay to their asymptotic value much faster than
the transversal ones. Thus, it turns out to be practically im-
possible to extract the characteristic decay exponent �z for
the longitudinal chirality correlations from the F�x� data, and
one can only try to estimate the exponent �=�xy of the trans-
versal chirality correlations.

A. S=1 zigzag chain

We have studied spin-1 zigzag chains with the frustration
parameter �=1 for several chain lengths L ranging from 64
to 192. For our calculation, even within the SU�2� method,
we needed a relatively large number of representative states
�from m�400 to m�2000, depending on L and Stot� to reach
good convergence. In the U�1� formulation, this corresponds
to an m of up to 8000, making an Abelian calculation much
more difficult.

As one can see from the numerically calculated magneti-
zation curve shown in Fig. 2, at �=1, the Sz�H� dependence
is featureless and shows neither plateaus, nor cusps, nor
�Sz=2 steps characteristic for even-odd phase, in accordance
with the results of Ref. 14.

We have computed the chirality correlator �13� in the
ground states of a large number of sectors with certain total
spin quantum number Stot. When computing F�n−n��, it was
averaged over the starting and final positions n and n�, and
care was taken to stay in the bulk, away from the ends of the
chain. The DMRG data for the correlator have been fitted to
the power-law form

F�x� = �0
2 +

A cos	q�x + ��

x� �14�

suggested by Eqs. �7� and �9�. The introduction of a finite
phase shift � is necessary due to the open boundary condi-

tions. Typical fits are presented in Fig. 3. From those fits, we
have extracted the behavior of the chirality order parameter
�0

2 and the exponent � as functions of the chain magnetiza-
tion M =Stot /L, shown, respectively, in Figs. 4 and 5. The
fitted wave vector q only weakly depends on the magnetiza-
tion: As M changes from 0 to 1, q varies from 1.79 to 1.83,
which favorably compares to the classical value Q��1.82
obtained from Eq. �12� at �=1. The phase shift
���=1��1
0.05 is also practically independent of M. The
behavior of the oscillation amplitude is shown in Fig. 6: The
scaling A	M2 suggested by Eq. �9� is indeed observed for
small M, and strong deviations appear for M �0.3.

One can see that for the bulk of M values, the order pa-
rameter �0

2 has practically reached convergence already at
L=128, so there is no need to perform the finite-size scaling.
The only region where finite-size effects remain strong is
M→1 	see Fig. 4�b�
: The �0

2�M� dependence at finite L
shows �0 vanishing at some M =Mc�1. The finite-size scal-
ing of Mc 	see the inset of Fig. 4�b�
 shows that there is no
trend to convergence even for L=192, although there is a
sizeable increase in Mc toward 1 with increasing the size L.
From the theoretical analysis, one expects Mc→1 for
L→�; however, studying this limit numerically can be quite
difficult, since for M→1, one is very close to the fully po-
larized state, the actual number of particles in the problem is
the number of magnons L�1−M�, which has to be large
enough to observe a phase transition.

0 1 2 3 4 5 6
H/J

1
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20

40
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80

100

120

S
tot

S=1, L=128, α=1

FIG. 2. Numerically calculated magnetization curve Stot
z �H� for a

S=1 zigzag chain of length L=128 with frustration parameter
�=J2 /J1=1.
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FIG. 3. �Color online� Typical DMRG results for the chirality
correlator �13� and results of fitting it to form �14�. The error bars
�Ref. 36� �here, smaller than the symbol size� indicate the variance
of F�x=n−n�� calculated from averaging over the initial and final
points n and n�.
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The quality of fits deteriorates for very large Stot, since the
overall scale of the chirality correlations goes to zero as
M→1. The fits become less reliable for small Stot as well for

the following reason: With Eq. �14�, one attempts to fit just
the oscillating �transversal� part of the chirality correlator.
For small Stot, the amplitude of the oscillating part is small,
while the gap in the antisymmetric sector is small, so the
oscillations appear on top of the exponential decay charac-

terized by two very different correlation lengths �̃ �for �=1,

one has �̃�7� and ���̃. It thus becomes a numerically ill-
posed problem to filter out the power-law decaying oscillat-
ing part on top of such a background.

The extracted critical exponent slowly changes with M
and lies in the range ��0.3–0.6, which qualitatively agrees
with the theoretical estimates predicting that for ��1, it
should vary from approximately 0.25 to 0.5; the error bars
shown in Fig. 5 are, in fact, only of indicative nature since
they only show uncertainties of the fit to the fixed fit function
and do not take into account the variations of the fit param-
eters which would result from adding subleading �e.g., expo-
nentially decaying� contributions to Eq. �14�.

The chosen value of �=1 is rather small and does not
allow a direct comparison of � with the theoretical value
�4K+�−1: If one naively tries to extract the velocity parameter
v assuming that K+ is given by Eq. �4� and using the data of
Ref. 32 for the K�M� dependence, the obtained values of v
fall below the phase separation threshold vc=2K / �
��. We
have refrained from studying chains with ��1 since, on the
one hand, increasing � causes a dramatic increase in numeri-
cal effort and, on the other hand, the chirality correlators
become more and more “polluted” by the exponentially de-
caying contributions with ever larger correlation length �.

B. S=1 Õ2 zigzag chain

We have also computed the chirality correlation function
�13� for S=1 /2 zigzag chains of length L=168,256, with
frustration parameter �=1. Typically, 300–400 representa-
tive SU�2� states were kept in the calculation. The magneti-
zation curve for a S=1 /2 zigzag chain with �=1 has been
presented in Fig. 3�a� of Ref. 13. According to the phase
diagram obtained in Ref. 13, at �=1, the S=1 /2 chain ex-

0 0.2 0.4 0.6 0.8 1
M=S

tot
/L

0

0.1

0.2

0.3

0.4

0.5

κ0
2

L=128
L=80
L=64
L=160
L=192

S=1, α=1

0.92 0.94 0.96 0.98 1
M=S

tot
/L

0

0.01

0.02

0.03

0.04

κ0
2

L=128
L=160
L=192 0.004 0.006 0.008

1/L

0.94

0.96

0.98

1

M
c

S=1, α=1

(b)

(a)

FIG. 4. �Color online� �a� The square chirality order parameter
�0

2 as a function of magnetization M =Stot /L for a S=1 zigzag chain
with �=1, extracted from fits of chirality correlation functions; �b�
zoom in of the same picture in the vicinity of M =1, where finite-
size effects become important. The inset shows the L scaling of the
point Mc where the long-range chirality order disappears in a finite
system of size L.
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FIG. 5. �Color online� Behavior of the transversal chirality cor-
relation exponent � for a S=1 chain with �=1 as a function of
magnetization M =Stot /L, extracted from fits of the correlation func-
tion �13� to the functional form �14�. The error bars shown corre-
spond to the uncertainties of the fit.
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FIG. 6. �Color online� Behavior of the oscillation amplitude A
as a function of the magnetization M =Stot /L for a S=1 chain with
�=1. One can see that the scaling A	M2 suggested by Eq. �9� is
only applicable for small M.
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hibits several phases with varying applied field H. Some of
those phases, namely, the even-odd phase and the plateau
phase, obviously do not possess any chiral order. “Suspect”
with respect to chirality are only two regions marked “TL2”
in Ref. 13 and identified as a two-component Tomonaga-
Luttinger liquid phase. Indeed, we observe a finite value of
vector chiral order in both TL2 regions �although not in the
entire high-field TL2 piece; see below�.

A typical example of the correlator in the chiral phase is
shown in Fig. 7�a�; for a comparison, we also show a cor-
relator in the even-odd phase which is nonchiral. The maxi-
mal magnitude of chirality in the S=1 /2 chain is roughly 1
order of magnitude smaller than in the S=1 case. To analyze
the chirality correlators, we had to use relatively large chain
lengths, because the gaps are smaller than in the S=1 case,
and the results for small L are polluted by slow exponentially
decaying contributions.

We have employed the same fitting procedure as de-
scribed above for the S=1 chain and analyzed the behavior
of the chirality order parameter �0

2 and the critical exponent
� as functions of the magnetization M =2Stot /L. The results
are shown, respectively, in Figs. 8 and 9. For the low-M
chiral region, the amplitude of oscillations in the correlation
function turns out to be too small to extract the exponent �
with any reasonable accuracy; so for that region, we were
only able to extract the order parameter �0

2.
The boundaries of the low-field piece of the chiral phase

coincide with the low-field TL2 region of Ref. 13. Surpris-

ingly, this is not the case for the high-field piece: While its
lower boundary reasonably agrees with the transition from
even-odd phase to TL2, its upper boundary lies at a finite
M =Mc�0.75 and not at M =1, as one expects from the the-
oretical analysis. It is worth mentioning that the magnetiza-
tion curve of the S=1 /2 chain at �=1 	see Fig. 3�a� of Ref.
13
 seems to exhibit a weak feature around M �0.75,
namely, a fast growth of the second derivative d2M /dH2. At
M→Mc, the critical exponent � tends to 1 /2, the value
which is expected theoretically close to the saturation field.

In contrast to S=1, where the respective boundary exhib-
ited strong finite-size scaling, in the S=1 /2 case, we have
not observed any significant change of Mc with increasing L
from 168 to 256, as seen from Fig. 8. We have found no
chiral order for L=516 chain with Stot=205, which means
that even for such a long chain, Mc�L=516��0.787. On the
basis of available data, one can conclude that the S=1 /2
chain might possess another nonchiral phase close to the
saturation field. The nature of this phase needs further inves-
tigation.
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FIG. 7. �Color online� Typical DMRG results for the chirality
correlator �13� of a S=1 /2 zigzag chain with �=1. The error bars
have the same meaning as in Fig. 3. �a� A point in the chiral phase.
The solid line shows a fit to Eq. �14�; �b� a correlator in the non-
chiral even-odd phase.
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FIG. 8. �Color online� Behavior of the square chirality �0
2 as the

function of magnetization M =2Stot /L for a S=1 /2 zigzag chain
with �=1, extracted from fits of chiral correlation functions.
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FIG. 9. �Color online� Behavior of the transversal chirality cor-
relation exponent � for a S=1 /2 chain with �=1 as the function of
magnetization M =2Stot /L, extracted from fits of the correlation
function �13� to the functional form �14�. The error bars shown
correspond to the uncertainties of the fit.
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IV. SUMMARY

We have studied spin-1 and spin-1 /2 isotropic antiferro-
magnetic zigzag chains in strong magnetic fields by means of
the matrix product density matrix renormalization group
technique. Existence of a phase with field-induced vector
chiral order is established for S=1 as well as for S=1 /2, and
the behavior of the order parameter and its correlations as
functions of the magnetization is analyzed. The chiral phase

is gapless and corresponds to a one-component Luttinger
liquid, thereby confirming the scenario proposed in Ref. 8.
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