
Applying matrix product operators to model systems with long-range interactions

Gregory M. Crosswhite*
Department of Physics, University of Washington, Seattle, Washington 98185, USA

A. C. Doherty and Guifré Vidal
School of Physical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia

�Received 5 June 2008; published 14 July 2008�

An algorithm is presented which computes a translationally invariant matrix product state approximation of
the ground state of an infinite one-dimensional �1D� system. It does this by embedding sites into an approxi-
mation of the infinite “environment” of the chain, allowing the sites to relax and then merging them with the
environment in order to refine the approximation. By making use of matrix product operators, our approach is
able to directly model any long-range interaction that can be systematically approximated by a series of
decaying exponentials. We apply these techniques to compute the ground state of the Haldane-Shastry model
�Phys. Rev. Lett. 60, 635 �1988� and Phys. Rev. Lett. 60, 639 �1988�� and present the results.

DOI: 10.1103/PhysRevB.78.035116 PACS number�s�: 05.10.�a, 02.70.�c, 03.67.�a, 71.27.�a

I. INTRODUCTION

Typical macroscopic quantities of material contain par-
ticles numbering on the order of 1026. The only hope of
modeling such systems is to come up with a representation
that is relatively small but nonetheless able to capture essen-
tial properties. For quantum systems this is particularly dif-
ficult because the state space grows exponentially with the
size of the system, so there is a large amount of information
which needs to be disposed.

One approach is to start with a small system and then
build it up using a renormalization transformation at each
step to project out “undesirable” states and keep the repre-
sentation small. The key is to get one’s criteria for “undesir-
able” correct. When studying low-energy behavior of a sys-
tem, it turns out that the best selection criteria is not the
energy �unless one is solving the Kondo problem1�, but the
weight in a density matrix, which incorporates interactions
with a surrounding environment. This idea, first proposed by
White2 in his density-matrix renormalization-group �DMRG�
algorithm, has proven very successful in building effective
but compact representations of large one-dimensional �1D�
systems. �See Ref. 3 for an excellent review of this subject.�
However, it has not worked as well as desired in modeling
systems with long-range interactions, and it does not produce
manifestly translationally invariant representations of trans-
lationally invariant states. One can improve on both these
fronts by working in momentum space rather than in real
space,4,5 but the computation is more costly as the transfor-
mation to momentum space introduces many additional op-
erators that need to be renormalized at each step, and it can
break symmetries that had been present in real space. Also,
none of these methods are particularly effective in two or
more dimensions.

An alternative approach is inspired by observing that the
DMRG technique converges to a matrix product state �MPS�
�Ref. 6�. Rather than building up progressively larger sys-
tems, the iTEBD algorithm7 assumes a priori that the system
takes an infinite translationally invariant MPS form and then
uses imaginary time evolution to converge to the ground
state. This approach has the advantage that it obtains a very

compact representation—in particular, it dispenses with the
need to form renormalized versions of operators. Further-
more, it admits a natural extension to two dimensions8 by
using projected entangled-pair states �PEPS� �Ref. 9�, a two-
dimensional generalization of MPS. However, it is only able
to handle systems with short-range interactions.

In this paper, we present an algorithm which also com-
putes a translationally invariant MPS representation of a
ground state but without being limited to short-range inter-
actions. Instead of simulating an evolution in imaginary time
as in the iTEBD algorithm, our approach follows the spirit of
the variational technique described in Ref. 10 but enhanced
to apply to infinite systems. Additionally, we build in the
ability to work with arbitrary matrix product operators,11,12

which makes this algorithm naturally suited to handle sys-
tems with long-range interactions.

The intuition behind our approach is as follows. Suppose
that one were given an infinitely large translationally invari-
ant 1D quantum chain held at zero temperature. If one were
to add an additional site to this chain and allow the chain to
relax, then one would expect that all of the old sites would
remain unchanged, and the new site would change to match
the rest. If one could emulate the environment experienced
by a single site in this infinite chain, then by embedding a
site into this environment and allowing the system to relax,
one would obtain a site that “looks like” all of the sites in our
infinite chain—giving us a compact representation for the
chain.

We note that this algorithm bears some similarity to the
product wave-function renormalization group �PWFRG�
�Ref. 13� in that both algorithms have the same goal—to
compute representations of ground states for infinite
systems—and both use the same underlying matrix product
structure to represent states.14 The difference is that while the
PWFRG approach seeks the infinite limit by starting with a
small system and progressively enlarging it, we start from
the very beginning with an infinite system represented in
terms of effective environments, which we progressively re-
fine. Furthermore, we incorporate matrix product operators
into our approach which allow us to model systems with
long-range interactions.

PHYSICAL REVIEW B 78, 035116 �2008�

1098-0121/2008/78�3�/035116�7� ©2008 The American Physical Society035116-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15061453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevB.78.035116


The remainder of this paper shall be organized as follows.
First, we shall review the matrix product formalism and
show how it allows us to construct a representation of a site
embedded in and entangled with an environment. Second,
we shall outline the operation of an algorithm, which uses an
iteration procedure to approximate the effective environment
of a site in an infinite chain; we shall then explain how one
can obtain the expected values of operators from the output
of this algorithm. Third, we shall explain how to obtain ma-
trix product factorizations of Hamiltonians with exponen-
tially decaying interactions. Finally, we shall pull all of these
ideas together and show how they can be applied to obtain an
accurate MPS representation of the ground state of the
Haldane-Shastry model—an exactly solvable model with
long-range interactions.

II. ALGORITHMS

A. Finding a MPS representation of the ground state

We start by recalling the form of a matrix product state for
a finite system.3 For a system with n sites, a matrix product
state with boundaries takes the form

S�1,�2,. . .,�n = �
�ik�

�L0
S�i1

�S1�i1i2

�1 �S2�i2i3

�2
¯ �Sn�inin+1

�n �Rn+1
S �in+1

.

The left-hand side corresponds to the rank-n tensor describ-
ing our state; each index �k corresponds to a basis of a physi-
cal observable such as the z component of spin at site k. The
rank-three tensors Sk are the site tensors, which have two
kinds of indices: the superscript index, which has dimension
d and corresponds to the actual physical observable; and the
subscript indices, which have dimension � and give informa-
tion about entanglement between each site and its neighbors.
The vectors L0 and Rn+1 give the boundary conditions.

The advantage of the matrix product representation is that
it decomposes the quantum state into a collection of tensors;
each of which is naturally associated with a site on the lat-
tice. Because of this, we shall see that we can “zoom in” on
one site and we only have to work with its corresponding
tensor and a relatively small environment. In this respect, it
is almost as nice as a truly local description that would let us
ignore all the other sites entirely—a fact which is remarkable
given that it can still capture nonlocal properties resulting
from entanglement.

Given this form, we now consider how to compute the
expected values of operators. As discussed in Refs. 11 and
12, operators of interest can typically be expressed as a ma-
trix product operator,

O��1,�1��,��2,�2��,. . .,��n,�n��

= �
�ik�

�L0
O�i1

�O1�i1i2

�1,�1�
¯ �On�inin+1

�n,�n��Rn+1
O �in+1

. �1�

Having decomposed both the state and the operator into a
product of tensors associated with lattice sites, we likewise
decompose the expected value into a product of tensors by
combining the state and operator tensor at each site to define,

�Ek
�O	�i,j 
 �Ek

�O	��i�,i�,i��,�j�,j�,j��

ª �
�k,�k�

�Sk
��i�,j�

�k �Ok�i�,j�
�k,�k��Sk�i�,j�

�k� .

�Note that we have taken all of the left and right subscript
indices and grouped them together.� To complete our decom-
position of the expected value, we shall also need to define
the left and right boundaries,

�L0
�O	�i
�i�,i�,i�� ª �L0

S��i��L0
O�i��L0

S�i�,

�Rn+1
�O	 � j
�j�,j�,j�� ª �Rn+1

S� � j��Rn+1
O � j��Rn+1

S � j�. �2�

These boundary vectors can be thought of as defining an
environment into which our system of n sites has been
embedded. With these tensors so defined, the expected
value of the matrix product operator O with respect to
the matrix product state S is given by �S�O�S	
=L0

�O	 ·E1
�O	 ·E2

�O	
¯En

�O	 ·Rn+1
�O	 , where · indicates summation

over the adjoining subscript indices.
Now we have almost arrived at the picture described in

Sec. I, except that we have an environment and multiple sites
rather than a single site. To compute the effective environ-
ment of a particular site in this chain, we absorb all of the
sites surrounding it into the system environment by contract-
ing the Ek

�O	 matrices into the left and right boundaries—that
is, we make the inductive definitions; Lk

�O	
ªLk−1

�O	 ·Ek
�O	 and

RkªEk
�O	 ·Rk+1

�O	. By doing this, we can write the expected
value of the operator as a function of this site tensor,

�S�O�S	�Sk� 
 Sk
� � M�O	k � Sk

ª �
�,��,i�,i�,

j�,j�

�Sk
��i�,j�

� �M�O	k��i�,j��,�i�,j��
���,���� �Sk�i�,j�

�� ,

�3�

where � denotes summation over the appropriate adjacent
subscript and superscript indices, and

�M�O	k��i�,j��,�i�,j��
���,����

ª �
i�,j�

�Lk−1
�O	�i�,i�,i��Ok�i�,j�

�k,�k��Rk+1
�O	� j�,j�,j�.

We have now obtained an explicit means to compute the
expected value of an observable O as a function of the site
tensor at position k knowing only the environment of the site
as given by Lk−1

�O	 and Rk+1
�O	. However, recall that we want to be

more than passive observers—we want to actively move the
system as close as possible to its ground state. Thus, we now
want to vary the site tensor Sk in order to minimize the en-
ergy of the system. If we let the Hamiltonian �matrix prod-
uct� operator be denoted by H and the identity operator by I,
then employing Eq. �3� we see that what we seek is the site
tensor which minimizes the function

Ek�Sk� ª
Sk

� � M�H	k � Sk

Sk
� � M�I	k � Sk

,

which gives us the �normalized� energy of the system as a
function of only the site tensor at position k �i.e., assuming

CROSSWHITE, DOHERTY, AND VIDAL PHYSICAL REVIEW B 78, 035116 �2008�

035116-2



that the environment has been frozen in place�. Since this is
a Rayleigh quotient, computing the minimizer is equivalent
to solving a generalized eigenvalue problem.

There is a subtlety in this procedure, however, which is
that one needs to take steps to make sure that the normaliza-
tion matrix M�I	k is well conditioned. This can be
done by imposing the “right-normalization” condition
��,i�Sl

��ij
��Sl�ij�

� =� j j� on all the sites to the left of k, and the
“left-normalization” condition ��,j�Sl

��ij
��Sl�i�j

� =�ii� on all the
sites to the right of k. This ensures that the subscript indices
connected to Sk are orthonormal, which makes M�I	k well
conditioned. We shall discuss how this is done in our algo-
rithm shortly; for more information on how the normaliza-
tion condition is used for finite-length systems, see Ref. 10.

Now we have all of the ingredients that we need to build
our algorithm; a way of expressing a chain as a site tensor
embedded in an environment and a way to relax a system in
this representation constrained, so that only the site tensor
�and not its environment� is changed. However, up to this
point we have been working with a finite system; in order to
apply these ideas to infinite systems, we shall modify our
notation slightly to replace position labels with iteration la-
bels. That is, we shall let Lk

�O	 and Rk
�O	 denote the infinite

environment at iteration step k, and Sk denote the inserted
site at this iteration. With this notation, the algorithm to find
the ground state of a system is given in Table I. It is domi-
nated by the costs of absorbing the site and operator tensors
into the environment �in step 3biv and in the Lanczos itera-
tion in step 3a�, which are, respectively, O�cd�3� and
O�c2d2�2� with c referring to the auxiliary dimension of the
operator tensor.

We note here that this algorithm is unstable when applied
directly to systems with antiferromagnetic interactions, be-
cause ground states of such systems are not invariant under
translations of one site. Happily, since such systems are in-
variant under translations of two sites, there is a simple fix:
work with blocks of two spins rather than one by setting d
=4 and by multiplying two of the operator tensors together to
form a two-site operator tensor;16 this only affects the inputs
to the algorithm and does not require changing the algorithm
itself.

B. Computing expected values of operators

The output of the algorithm of Sec. II A is a normalized

site tensor S̃ which gives a translationally invariant represen-
tation for the ground state of the system. In order to make
this useful, we need to have a way to obtain the expected
value of operators from it. Of course, for extensive observ-
ables the expected value will be infinite since we have an
infinitely large system; so instead, we seek the more useful
quantity of the expected value per site. We shall consider two
cases of operators: local operators and general matrix prod-
uct operators. The basic trick in both cases is to note that
limN→��E�O	�N ·v� =�N ·v� , where � is a matrix in the maximal
eigenspace of E�O	—that is, in the infinite limit the action of
the operator will converge to its action on the maximal
eigenspace since its action on all other eigenspaces will be

negligible by comparison. �Assuming, of course, that � ·v�
�0.�

First we consider local operators, which can be expressed
as sum of terms of the form I�� � O1 � O2 � . . . � ON � I��

such as a magnetic-field operator, I�� � Z � I�� or a two-
point correlator I�� � Z � I�r � Z � I��. Since our system is
translationally invariant to compute the expected value per
site of this operator, we need only to evaluate the expected
value of one term in the sum. Assuming that E�I	 has a non-
degenerate maximal eigenvalue, we have that for �almost�
any vector v� , �E�I	�� ·v� �v�R and v� · �E�I	���v�L, where v�L and
v�R are the respective left and right eigenvectors correspond-
ing to the maximal eigenvalue. Ergo, the expected value of
one term of this operator �and thus the expected value per
site� is given by

TABLE I. Algorithm to compute a �normalized� translationally
invariant matrix product state representation of the ground state of
an infinite chain.

1. Set �=1 and LS=RS=1.

2. Compute L1
�O	 and R1

�O	 for the Hamiltonian �matrix product�
operator H and the identity operator I. �The latter, of course,
has trivial boundaries.�

3. Until convergence has been reached:

�a� Use an eigenvalue solver �such as ARPACK �Ref.
15�� to obtain the minimal eigenvalue and
corresponding eigenvector of the generalized
eigenvalue problem M�H	kSk=�M�I	kSk. To
accelerate convergence, feed in Sk−1 as a starting
estimate for the eigenvector.

�b� If this is an odd-numbered step, then right
normalize Sk and contract into the left boundary.
Specifically:

�i� Merge the superscript and first subscript index
of Sk to form a matrix and compute the singular
value decomposition �SVD�, U ·	 ·V†.

�ii� Set S̃kªU ·V† and ungroup indices to return

S̃k to its original rank-three shape.

�iii� Compute Ek
�O	 for H and I using the

normalized S̃k.

�iv� Contract the site into the left boundary by
setting Lk+1

�O	
ªLk

�O	 ·Ek
�O	 and Rk+1

�O	
ªRk

�O	.
�This step “absorbs” the site into the
environment.�

�c� If this is an even-numbered step, perform an
analogous process, but left normalize Sk by
merging the superscript and second index together
before the SVD and then contract the normalized
site into the right boundary.

4. If a better approximation to the ground state is desired, then
increase � for the system and repeat step 3. Increasing the
dimension of a subscript can be done without altering the state
by multiplying the adjoining tensors by a �
 ��+��� matrix
and its inverse; this allows one to build on the work of
previous iterations �and hence accelerate convergence�
rather than having to start from scratch with the new �.

APPLYING MATRIX PRODUCT OPERATORS TO MODEL… PHYSICAL REVIEW B 78, 035116 �2008�

035116-3



v�L · EO1 · EO2 . . . EON · v�R

v�L · �E�I	�N · v�R .

Next we consider general matrix product operators. We
start by writing an expression for the expected value per site
for a finite chain of length N whose site tensors are copies of
the �normalized� site tensor obtained from the variational
algorithm in Sec. II A. Since the infinite chain has no bound-
aries to compute the expected value of the finite chain, we
need to explicitly supply left and right boundaries, respec-
tively, LS and RS; and so the expected value per site of O is
a function of the boundaries given by

EN�LS,RS� ª
1

N

L�O	 · �E�O	�N · R�O	

L�I	 · �E�I	�N · R�I	 ,

where L�O	, R�O	, L�I	, and R�I	 are implicitly functions of LS

and RS given by Eq. �2�. Assuming O corresponds to an
extensive observable, we expect that limN→�EN�LS ,RS�
= �O	; that is, in the infinite limit the expected value per site
converges to some number �O	, which is independent of the
boundaries. With this physically reasonably assumption, we
can reason out about the structure of E�O	 and E�I	 to obtain
an algorithm for computing �O	.

We first observe that since the maximal eigenvalue of E�I	

is one �due to the normalization of the site tensor S̃�, so must
be the maximal eigenvalue of E�O	, since otherwise EN,
would be exponential in N. Furthermore, since EN is linear in
N for large N, the maximal eigenspace of E�I	 must have a
Jordan block structure–that is, there must be a matrix U

�u�1u�2� with orthonormal columns u� i that provide a basis
for this eigenspace such that AªU ·E�O	 ·U†= � 1

0
�
1 �. The ma-

trix element � can be thought of as giving us the unnormal-
ized expected value of O per site. In order to normalize it,
we observe that as N→�,

EN →
1

N

L�O	 · �u�1u�1
† + u�2u�2

† + N�u�1u�2
†� · R�O	

L�I	 · �E�I	�N · R�I	

→ �
L�O	 · �u�1u�2

†� · R�O	

L�I	 · �E�I	�N · R�I	 .

Since we expect EN to be independent of the boundaries for
large N, it must be the case that

L�I	 · �E�I	�N · R�I	 → ��L�O	 · �u�1u�2
†� · R�O	�


 ��L�I	 · �v�1
Lv�2

R†� · R�I	� ,

where v�k
L
ªu�k ·LO
�i�uk,�i�,i�,i��Li�

O and v�k
R
ªu�k ·RO


�i�uk,�i�,i�,i��Ri�
O; that is, v�k

L and v�k
R are the projections of the

eigenspace of E�O	 into a space applicable to E�I	 by dotting
out the respective left and right boundaries of the matrix
product operator O. As put in another way, if we let VL

ª �v�1
Lv�2

L� and VR
ª �v�1

Rv�2
R�, then the limiting action of E�I	 in

the �projected� eigenspace is given by BªVL ·E�I	 ·VR†

= � 0
0

�
0 �. The matrix element � gives us the normalization con-

stant, so that �O	ª limN→�EN=� /�.
It remains to extract � and � from the respective matrices

A and B. Our eigenvalue solver is not guaranteed to give us
a basis of the eigenspace that makes A and B have the nice

form above, but happily it is easy to see that �
=Tr�A ·A†�−2 and �=Tr�B ·B†�, and these formulas are
invariant under similarity transforms of A and B, so they
work independent of the basis we are given. The algorithm
we have derived in the preceding paragraphs is summarized
in Table II.

III. MATRIX PRODUCT FACTORIZATION OF
EXPONENTIALLY DECAYING INTERACTIONS

In the algorithms of Sec. II, we assume that there is a
matrix product representation of our Hamiltonian. It has pre-
viously been shown that there are matrix product factoriza-
tions of Hamiltonians with short-range interactions.11,12 In
this section, we extend these results to show that there are
also matrix product factorizations of Hamiltonians with long-
range exponentially decaying interactions as well.

So consider a Hamiltonian of an N-site system experienc-
ing a sum of long-range exponentially decaying interactions,

H ª �
i+1+r+1+j=N

��
n

�n�n
r�I� i

� X � I�r
� X � I� j ,

where I is the identity operator and X is the Pauli operator
X. We shall now employ the formalism in Ref. 12 to obtain
a factorization of this Hamiltonian. We start by changing our
interpretation of the Hamiltonian—rather than thinking of it
as a sum of tensor product terms with complex coefficients,
we shall instead think of it as a function which maps arbi-
trary strings of X and I symbols to complex numbers. In our
sum each term takes the form ��n�n�n

r�I� i � X � I�r � X
� I� j with i , j ,r�0, so our corresponding function maps
strings of the form IiXIrXI j to �n�n�n

r and all other strings
to zero.

We shall now construct a finite state automaton, which

TABLE II. Algorithm to compute �O	 for general matrix prod-
uct operator O.

1. Compute the maximal two-dimensional eigenspace
of E�O	; for example, by using ARPACK �Ref. 15�
and requesting a Schur basis rather than a
�nonexistent� eigenvector basis; and store the basis
vectors in the columns of a matrix U.

2. Express the action of E�O	 in this space by
computing the 2
2 matrix AªU ·E�O	 ·U†.

3. Extract the unnormalized expected value from this
matrix by computing �ª

Tr�A† ·A�−2.

4. Project out the operator-dependent boundary
conditions from the vectors in this eigenspace to
obtain VL

ªLO ·U
�Li�
OU�i�,i�,i��,k and VR

ªRO ·U

�Ri�

OU�i�,i�,i��,k.

5. Express the action of E�I	 in this projected space
by computing the 2
2 matrix BªVL ·E�I	 ·VR†.

6. Extract the normalization constant by computing �
ª

Tr�B† ·B�.
7. Obtain the �normalized� expected value by

computing �O	ª� /�.

CROSSWHITE, DOHERTY, AND VIDAL PHYSICAL REVIEW B 78, 035116 �2008�

035116-4



computes this function. A finite state automaton can be
thought of as a machine which reads through an input string
and changes its state in response to each input symbol ac-
cording to a set of transition rules. The transitions are non-
deterministic and weighted—that is, the automaton can take
many transitions simultaneously, and at the end of the string
it outputs a number corresponding to the sum of the product
of the weights along each sequence of transitions that it took.
The automaton starts on a designated initial state; if it does
not end on a designated accept state or it encounters a sym-
bol without an associated transition, then it outputs a zero
�overriding other weights�.

The automaton which computes the function representing
our operator is illustrated in Fig. 1. States are indicated by
circles, and transition rules are indicated by arrows labeled
with a symbol and a weight �one if not otherwise specified�.
An unconnected arrow designates the initial state �1� and
shading designates the accept state �2�. A good way to think
about what is going on is that terms are generated by each
possible walk from state �1� to state �2�. So for example, by
taking the path 1→1→3→3→3→2 we generate the term
��1�1

2�I � X � I � I � X; summing over all walks for strings
of the form IXI2X we obtain the desired coefficient �n�n�n

2.
From this automaton, we immediately obtain a matrix

product operator representation. The initial and accept states
give us the values for the left and right boundaries: �LO�k
=�1,k and �RO�k=�2,k. The elements of the operator tensor
Oi,j

A are given by the weight on the i→ j transition with the
symbol corresponding to operator A �zero if no such transi-
tion exists�; for example, we have that O1,3

X =�1. To get a
feeling for why this works, observe that a run of the automa-
ton is equivalent to starting with a vector giving initial
weights on the states, multiplying this vector some number
of times by a transition matrix and then dotting the result
with a vector that filters out all but the weights on the accept
states; this procedure is exactly equivalent to the form of Eq.
�1�.

This process is easily extended to include terms with ar-
bitrary spin coupling interactions such as XY, YY, ZZ,

etc. Furthermore, one can combine a sum of several such
interactions into a single automaton by having them all share
the same starting and ending states.

IV. RESULTS: HALDANE-SHASTRY MODEL

Now we pull all of the ideas from Secs. I–III together and
apply them to tackle the Haldane-Shatry model.17,18 In the
infinite limit this model is given by the Hamiltonian H
=�i�r� i ·� i+r /r2, which features an antiferromagnetic dipole
interaction which falls off with the square of the distance
between sites. �Note that since this model features antiferro-
magnetic interactions, we need to work with blocks of two
sites as discussed at the end of Sec. II A.� Although H cannot
be expressed exactly as a matrix product operator, we can
approximate it arbitrarily well by a sum of exponentially
decaying interactions H��i�r� i ·� i+r��n�n�n

r−1� �with �n
�R and ��n��1�, which can be factored exactly using the
technique in Sec. III. Since there are three spin-coupling in-
teractions, i

Xi+r
X , i

Yi+r
Y , and i

Zi+r
Z , which we combine

into a single automaton as discussed at the end of Sec III, we
obtain an automaton with a number of states equal to three
times the number of terms in the expansion N plus two more
for the starting and ending states; this quantity gives us the
size of the auxiliary dimension for the corresponding matrix
product operator c=3N+2.

It remains to find the coefficients in this expansion. One
approach is to numerically solve for the coefficients which
minimize the sum of the squares of the difference between
the approximation and the exact potential for distances up to
some cutoff—that is, to find the minimizer of the function

f��1,�1, . . . ,�N,�N� = �
i=1

N

�
r=1

rcutoff ��i�i
r−1 −

1

r2�2

,

where rcutoff should be chosen to be just beyond the maxi-
mum effective range of the approximation, since larger val-
ues of rcutoff result in a longer running time for the minimi-
zation without resulting in a better fit.

For our application of the algorithm, we used a nonlinear
least-squares minimization routine from MINPACK to find co-
efficients for expansions with three, six, and nine terms. The
resulting approximate potentials are plotted along side the
exact potential in Fig. 2. The upper cutoff on r was set to
10000, because as can be seen in Fig. 2 this was just beyond
the effective maximum range obtainable from a nine-term
approximation.

Given this approximate matrix product factorization, we
applied the algorithm in Table I to compute a translationally
invariant matrix product state representation of the ground
state for selected values of �, employing each of the three-,
six-, and nine-term expansions. The energy per site was com-
puted using the algorithm in Table II and compared to the
exact value obtained from Ref. 18. The difference between
these values �i.e., the residual� is plotted for each expansion
as a function of � in Fig. 3. Note that the residuals for all
three expansions agree up to some point and then diverge to
different “floors.” This is because at first the small value of �
is the dominating factor which limits the fidelity of the

FIG. 1. �Color online� Finite state automata representation of a
sum of exponentially decaying XX interactions.

APPLYING MATRIX PRODUCT OPERATORS TO MODEL… PHYSICAL REVIEW B 78, 035116 �2008�

035116-5



ground state and then later as � becomes large, the finite
number of terms in the exponential approximation becomes
the dominating factor.

For the nine-term expansion, we also computed the two-
point correlator—that is, C�r�ª �X � I��r−1� � X	, using the
algorithm given in Sec. II B for computing the expected
value of a local operator. The result for several values of � is
plotted in Fig. 2 against the exact value from Ref. 18. Note
that our approximation gets good agreement up to some
length; after which, it becomes a constant. This is because
the algorithm is attempting to approximate this correlator
using a sum of decaying exponentials plus a constant term
analogous to how we used a sum of decaying exponentials to
approximate the 1 /r2 interactions. By increasing �, we are
increasing the number of terms available to track the cor-
relator, which results in systematic improvement.

V. CONCLUSIONS

To summarize, in this paper we have presented an algo-
rithm for computing the ground state of infinite 1D systems.
This algorithm differs from the iTEBD algorithm7 in that it
uses a variational approach instead of imaginary time evolu-

tion and from the PWFRG �Ref. 13� in that it considers an
infinite system from the start. Furthermore, since the algo-
rithm itself employs matrix product operators, it has the im-
portant advantage of being capable of modeling long-range
interactions and in particular, to any interaction which can be
approximated by a sum of decaying exponentials. In order to
benchmark the algorithm, we have computed an infinite MPS
for the ground state of the Haldane-Shastry model. The cor-
responding two-point correlators are in remarkable agree-
ment with the exact solution up to distances above a thou-
sand spins.

In conclusion, our results indicate that this algorithm adds
significantly to the existent tools to address 1D many-body
systems since it allows the properties of bulk-scale materials
to be studied for realistic long-range potentials. Furthermore,
it admits a natural extension to lattice systems in higher spa-
tial dimensions for which work is currently in progress.

We note that upon completion of this work, we learned of
simultaneous work on an equivalent algorithm by McColloch
in Ref. 19. His presentation includes a detailed comparison
of the convergence of the iTEBD �Ref. 7� and the variational
approaches.

ACKNOWLEDGMENTS

G.C. performed this work as part of the East Asia Pacific
Summer Institute program cofunded by the National Science
Foundation and the Australian Academy of Science. Addi-
tional support was received from the Computational Science
Graduate program, U.S. Department of Energy Grant
No. DE-FG02-97ER25308. A.D. and G.V. �FF0668731�
acknowledge the support from the Australian Research
Council.

*gcross@phys.washington.edu
1 K. G. Wilson, Rev. Mod. Phys. 47, 773 �1975�.
2 S. R. White and R. M. Noack, Phys. Rev. Lett. 68, 3487 �1992�.
3 U. Schollwöck, Rev. Mod. Phys. 77, 259 �2005�.
4 T. Xiang, Phys. Rev. B 53, R10445 �1996�.
5 S. Nishimoto, E. Jeckelmann, F. Gebhard, and R. M. Noack,

Phys. Rev. B 65, 165114 �2002�.
6 S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 �1995�; S.

Rommer and S. Östlund, Phys. Rev. B 55, 2164 �1997�.
7 G. Vidal, Phys. Rev. Lett. 98, 070201 �2007�.
8 J. Jordan, R. Orus, G. Vidal, F. Verstraete, and J. I. Cirac,

arXiv:cond-mat/0703788 �unpublished�.

FIG. 2. �Color online� �Top� Decaying three-, six-, and nine-
term exponential approximations to 1 /r2 potential. �Bottom� Two-
point correlator for selected values of � using the nine-term expo-
nential approximation; a residual of the correlator for each value of
� is plotted simultaneously and labeled by ��.

FIG. 3. �Color online� Difference between the energy of the
computed state and the energy of the exact ground state plotted for
each of the three exponential expansions that were employed.

CROSSWHITE, DOHERTY, AND VIDAL PHYSICAL REVIEW B 78, 035116 �2008�

035116-6



9 F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066 �unpub-
lished�.

10 F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93,
227205 �2004�.

11 I. P. McCulloch, J. Stat. Mech.: Theory Exp. �2007� P10014.
12 G. M. Crosswhite and D. Bacon, arXiv:0708.1221, Phys. Rev. A

�to be published�.
13 T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. 64, 4084 �1995�;

Y. Hieida, K. Okunishi, and Y. Akutsu, Phys. Lett. A 233, 464
�1997�.

14 K. Ueda, T. Nishino, K. Okunishi, Y. Hieida, R. Derian, and A.
Gendiar, J. Phys. Soc. Jpn. 75, 014003 �2006�.

15 R. Lehoucq, D. Sorensen, and C. Yang, ARPACK users’ guide,

1997 �http://www.caam.rice.edu/software/ARPACK�.
16 Note that this approach does not scale well beyond two sites; that

is, given an interaction which is symmetric under translations of
n sites, blocking the sites together grows the size of the repre-
sentation by a factor of 2n. An alternative strategy is to add n
sites at a time to the center of the system and then use a sweep-
ing algorithm like that described in Ref. 10 to optimize the site
tensors; the final representation is then given by n site tensors
rather than one.

17 F. D. M. Haldane, Phys. Rev. Lett. 60, 635 �1988�.
18 B. S. Shastry, Phys. Rev. Lett. 60, 639 �1988�.
19 I. P. McCulloch, arXiv:0804.2509 �unpublished�.

APPLYING MATRIX PRODUCT OPERATORS TO MODEL… PHYSICAL REVIEW B 78, 035116 �2008�

035116-7


