773 research outputs found

    The effects of mixture-induced local dependence on diagnostic classification

    Get PDF
    Diagnostic Classification Models (DCMs) have been extensively researched in recent psychometric literature for providing mastery skill profiles for diagnostic feedback (Henson, Templin, & Willse, 2009). DCMs are multidimensional confirmatory latent class models (LCMs) where latent classes represent skill mastery profiles and latent attributes are categorical (mastery or non-mastery). DCMs make a central assumption that once mastery profiles are accounted for that items are independent, referred to as local independence (LI). Construct irrelevant variance (e.g., differential item functioning (DIF), speededness, test wiseness, item-to-skill misspecification) or underrepresentation (extra dimensionality, inappropriate definitional grain-size of defined skills) could introduce systematic within-class variation which would violate LI. Using connections of LCMs with mixture IRT models, this study explores the effects of introducing systematic within-class variation on diagnostic classification. The log-linear cognitive diagnosis model (LCDM) is extended to include continuous abilities, akin to a multidimensional item response theory (MIRT) model with underling mixtures due to skill mastery/nonmastery. Data were then simulated for different ability variances related to distribution overlap conditions. Multiple DCMs are then fit using the LCDM framework in a simulation study. Impact on classification and local dependence detection are summarized. It was found that as mixture overlap increased due to companion ability variance that diagnostic classification in DCMs greatly suffered, but can be detected by Yen’s Q3. The relationship of the degree of inaccuracy and effect sizes based on ability variance and group separation is delineated. Recommendations for practitioners are given along with areas for future study

    Smeared phase transition in a three-dimensional Ising model with planar defects: Monte-Carlo simulations

    Get PDF
    We present results of large-scale Monte Carlo simulations for a three-dimensional Ising model with short range interactions and planar defects, i.e., disorder perfectly correlated in two dimensions. We show that the phase transition in this system is smeared, i.e., there is no single critical temperature, but different parts of the system order at different temperatures. This is caused by effects similar to but stronger than Griffiths phenomena. In an infinite-size sample there is an exponentially small but finite probability to find an arbitrary large region devoid of impurities. Such a rare region can develop true long-range order while the bulk system is still in the disordered phase. We compute the thermodynamic magnetization and its finite-size effects, the local magnetization, and the probability distribution of the ordering temperatures for different samples. Our Monte-Carlo results are in good agreement with a recent theory based on extremal statistics.Comment: 9 pages, 6 eps figures, final version as publishe

    Dynamics at a smeared phase transition

    Full text link
    We investigate the effects of rare regions on the dynamics of Ising magnets with planar defects, i.e., disorder perfectly correlated in two dimensions. In these systems, the magnetic phase transition is smeared because static long-range order can develop on isolated rare regions. We first study an infinite-range model by numerically solving local dynamic mean-field equations. Then we use extremal statistics and scaling arguments to discuss the dynamics beyond mean-field theory. In the tail region of the smeared transition the dynamics is even slower than in a conventional Griffiths phase: the spin autocorrelation function decays like a stretched exponential at intermediate times before approaching the exponentially small equilibrium value following a power law at late times.Comment: 10 pages, 8eps figures included, final version as publishe

    Anderson-Mott transition as a quantum glass problem

    Full text link
    We combine a recent mapping of the Anderson-Mott metal-insulator transition on a random-field problem with scaling concepts for random-field magnets to argue that disordered electrons near an Anderson-Mott transition show glass-like behavior. We first discuss attempts to interpret experimental results in terms of a conventional scaling picture, and argue that some of the difficulties encountered point towards a glassy nature of the electrons. We then develop a general scaling theory for a quantum glass, and discuss critical properties of both thermodynamic and transport variables in terms of it. Our most important conclusions are that for a correct interpretation of experiments one must distinguish between self-averaging and non-self averaging observables, and that dynamical or temperature scaling is not of power-law type but rather activated, i.e. given by a generalized Vogel-Fulcher law. Recent mutually contradicting experimental results on Si:P are discussed in the light of this, and new experiments are proposed to test the predictions of our quantum glass scaling theory.Comment: 25pp, REVTeX, 5 ps figs, final version as publishe

    Postfire hydrologic response along the Central California (USA) coast: insights for the emergency assessment of postfire debris-flow hazards

    Get PDF
    The steep, tectonically active terrain along the Central California (USA) coast is well known to produce deadly and destructive debris flows. However, the extent to which fire affects debris-flow susceptibility in this region is an open question. We documented the occurrence of postfire debris floods and flows following the landfall of a storm that delivered intense rainfall across multiple burn areas. We used this inventory to evaluate the predictive performance of the US Geological Survey M1 likelihood model, a tool that presently underlies the emergency assessment of postfire debris-flow hazards in the western USA. To test model performance, we used the threat score skill statistic and found that the rainfall thresholds estimated by the M1 model for the Central California coast performed similarly to training (Southern California) and testing (Intermountain West) data associated with the original model calibration. Model performance decreased when differentiating between “minor” and “major” postfire hydrologic response types, which weigh effects on human life and infrastructure. Our results underscore that the problem of false positives is a major challenge for developing accurate rainfall thresholds for the occurrence of postfire debris flows. As wildfire activity increases throughout the western USA, so too will the demand for the assessment of postfire debris-flow hazards. We conclude that additional collection of field-verified inventories of postfire hydrologic response will be critical to prioritize which model variables may be suitable candidates for regional calibration or replacement

    Prophylactic methylprednisolone to reduce inflammation and improve outcomes from one lung ventilation in children: a randomized clinical trial.

    Get PDF
    BACKGROUND: One lung ventilation (OLV) results in inflammatory and mechanical injury, leading to intraoperative and postoperative complications in children. No interventions have been studied in children to minimize such injury. OBJECTIVE: We hypothesized that a single 2-mg·kg(-1) dose of methylprednisolone given 45-60 min prior to lung collapse would minimize injury from OLV and improve physiological stability. METHODS: Twenty-eight children scheduled to undergo OLV were randomly assigned to receive 2 mg·kg(-1) methylprednisolone (MP) or normal saline (placebo group) prior to OLV. Anesthetic management was standardized, and data were collected for physiological stability (bronchospasm, respiratory resistance, and compliance). Plasma was assayed for inflammatory markers related to lung injury at timed intervals related to administration of methylprednisolone. RESULTS: Three children in the placebo group experienced clinically significant intraoperative and postoperative respiratory complications. Respiratory resistance was lower (P = 0.04) in the methylprednisolone group. Pro-inflammatory cytokine IL-6 was lower (P = 0.01), and anti-inflammatory cytokine IL-10 was higher (P = 0.001) in the methylprednisolone group. Tryptase, measured before and after OLV, was lower (P = 0.03) in the methylprednisolone group while increased levels of tryptase were seen in placebo group after OLV (did not achieve significance). There were no side effects observed that could be attributed to methylprednisolone in this study. CONCLUSIONS: Methylprednisolone at 2 mg·kg(-1) given as a single dose prior to OLV provides physiological stability to children undergoing OLV. In addition, methylprednisolone results in lower pro-inflammatory markers and higher anti-inflammatory markers in the children\u27s plasma

    The effect of health literacy on knowledge and receipt of colorectal cancer screening: a survey study

    Get PDF
    BACKGROUND: An estimated one-half of Americans have limited health literacy skills. Low literacy has been associated with less receipt of preventive services, but its impact on colorectal cancer (CRC) screening is unclear. We sought to determine whether low literacy affects patients' knowledge or receipt of CRC screening. METHODS: Pilot survey study of patients aged 50 years and older at a large, university-affiliated internal medicine practice. We assessed patients' knowledge and receipt of CRC screening, basic sociodemographic information, and health literacy level. We defined limited literacy as reading below the ninth grade level as determined by the Rapid Estimate of Adult Literacy in Medicine. Bivariate analyses and exact logistic regression were used to determine the association of limited health literacy with knowledge and receipt of CRC screening. RESULTS: We approached 105 patients to yield our target sample of 50 completing the survey (recruitment rate 48%). Most subjects were female (72%), African-American (58%), and had household incomes less than $25,000 (87%). Overall, 48% of patients had limited literacy skills (95% CI 35% to 61%). Limited literacy patients were less likely than adequate literacy patients to be able to name or describe any CRC screening test (50% vs. 96%, p < 0.01). In the multivariable model, limited literacy patients were 44% less likely to be knowledgeable of CRC screening (RR 0.56, p < 0.01). Self-reported screening rates were similar (54% vs. 58%, p = 0.88). CONCLUSION: Patients with limited literacy skills are less likely to be knowledgeable of CRC screening compared to adequate literacy patients. Primary care providers should ensure patients' understanding of CRC screening when discussing screening options. Further research is needed to determine if educating low literacy patients about CRC screening can increase screening rates

    Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment

    Full text link
    In this paper, we review theoretical and experimental research on rare region effects at quantum phase transitions in disordered itinerant electron systems. After summarizing a few basic concepts about phase transitions in the presence of quenched randomness, we introduce the idea of rare regions and discuss their importance. We then analyze in detail the different phenomena that can arise at magnetic quantum phase transitions in disordered metals, including quantum Griffiths singularities, smeared phase transitions, and cluster-glass formation. For each scenario, we discuss the resulting phase diagram and summarize the behavior of various observables. We then review several recent experiments that provide examples of these rare region phenomena. We conclude by discussing limitations of current approaches and open questions.Comment: 31 pages, 7 eps figures included, v2: discussion of the dissipative Ising chain fixed, references added, v3: final version as publishe
    • …
    corecore