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Diagnostic Classification Models (DCMs) have been extensively researched in 

recent psychometric literature for providing mastery skill profiles for diagnostic feedback 

(Henson, Templin, & Willse, 2009).  DCMs are multidimensional confirmatory latent 

class models (LCMs) where latent classes represent skill mastery profiles and latent 

attributes are categorical (mastery or non-mastery).  DCMs make a central assumption 

that once mastery profiles are accounted for that items are independent, referred to as 

local independence (LI).  Construct irrelevant variance (e.g., differential item functioning 

(DIF), speededness, test wiseness, item-to-skill misspecification) or underrepresentation 

(extra dimensionality, inappropriate definitional grain-size of defined skills) could 

introduce systematic within-class variation which would violate LI.  

Using connections of LCMs with mixture IRT models, this study explores the 

effects of introducing systematic within-class variation on diagnostic classification.  The 

log-linear cognitive diagnosis model (LCDM) is extended to include continuous abilities, 

akin to a multidimensional item response theory (MIRT) model with underling mixtures 

due to skill mastery/nonmastery.  Data were then simulated for different ability variances 

related to distribution overlap conditions.  Multiple DCMs are then fit using the LCDM 

framework in a simulation study.  Impact on classification and local dependence 

detection are summarized.  It was found that as mixture overlap increased due to 

companion ability variance that diagnostic classification in DCMs greatly suffered, but  



can be detected by Yen’s Q3.  The relationship of the degree of inaccuracy and effect 

sizes based on ability variance and group separation is delineated.  Recommendations for 

practitioners are given along with areas for future study. 
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CHAPTER I 
 

INTRODUCTION 
 

 
Statement of the Problem 

Measurement can be negatively impacted by unaccounted for sources of 

heterogeneity.  One source of such heterogeneity could be unobserved (latent) groups 

within samples of examinees (i.e., “mixtures” of examinees), for which mixture item 

response theory (IRT) models have been proposed.  In presenting estimation methods for 

the mixture Rasch IRT model, Willse (2011) calls for future research to investigate 

connections between mixture IRT and latent class models (LCMs).  von Davier and Rost 

(2007) remark that when the variance of the latent ability distribution within the mixture 

IRT model goes to zero within each mixture, then mixture IRT resembles a LCM.  Willse 

(2011) notes this can be accomplished by fixing the examinee ability parameters to zero, 

and that when nonzero ability variance is present that this can be conceptualized as a 

LCM with a violation of local independence (LI).  Violating LI in LCMs could have a 

negative effect on modeling class membership, estimating model parameters, and 

evaluating model fit, thereby calling into question validity of results.   

One kind of LCMs that have grown in stature in recent educational research has 

been diagnostic classification models (DCMs).  DCMs are multidimensional 

confirmatory LCMs which are item response models with categorical latent variables.  

The categories of the latent variables have been previously interpreted in educational 
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literature as skill mastery and non-mastery.  DCM estimates have been used to provide 

diagnostically rich feedback to examinees as a profile of the likelihood of obtaining 

various skills.  The process of assessment design, skill mastery estimation, and reporting 

is referred to as diagnostic measurement (DM) (Rupp, Templin, & Henson, 2010).  

Madison and Bradshaw (2014) note that DCMs are well-suited to accomplish DM 

because of their increased reliability relative to other multidimensional psychometric 

models and also their practical efficiency.   

All uses and interpretations from assessments with non-trivial stakes should be 

fair, reliable and valid (AERA, APA, NCME, 2014).  K-12 schools are increasingly 

developing or purchasing interim and formative assessments to identify learning 

deficiencies well before end-of-year summative assessments (Hansen et al., 2010).  DM 

has increasingly been referenced as a way to provide formative diagnostic feedback of 

skill mastery for remediation purposes to examinees, as well as for instructors of 

examinees.  One reason for the impetus has been the educational and political landscape 

in recent decades shaped by the Common Core State Standards (CCSS) Initiative based 

on funding from the Race to the Top program.  Two large consortia, the Partnership for 

Assessment of Readiness for College and Careers (PARCC) and Smarter Balanced 

Assessment Consortium (SBAC), have underlined the role of diagnostic assessment for 

enhancing learning to increase student achievement (and therefore presumably college 

and career readiness).   

The educational literature is replete with discussions about formative assessment 

(FA), and a detailed discussion of defining and use are not given here.  An interested 
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reader can be pointed to the excellent review of FA given by Black and William (1998).  

Heritage et al. (2009) develop a measure of teacher knowledge and examined what 

instructional method should be implemented during FA processes.  They conclude that if 

teachers do not know what to do when students need remediation then FA has little value.  

Perie et al. (2009) discuss interim assessment, which are in between end-of-year 

summative assessment and day-to-day formative assessment (e.g., benchmark).  Interim 

assessment presents special issues such as material not yet being covered or attempting to 

be reliable mini-versions of the end-of-year assessment.  The authors conclude with some 

skepticism of interim assessment and suggest that perhaps “resources would be better 

spent helping teachers learn formative assessment techniques.”  Shepard (2009) 

concludes that FA purports to raise student achievement but this still must be validated: 

 
Heritage et al. (2009) showed that teachers generally had difficulty saying what 
instructional interventions/appropriate next instructional steps should be used 
given evidence of what a student did or did not understand. 

 
 

Huff et al. (2007) present on the demand of diagnostic assessment in K-12 

education.  Results from a nationally representative random sample of 400 teachers about 

utility of large-scale state-mandated and commercial assessments for diagnostic 

remediation and instruction are described.  They provide recommendations for future 

directions of DM for K-12 teachers, and compare cognitive psychology to what K-12 

educators wish diagnostic assessment could provide them.  A non-trivial proportion of 

teacher never use results from such assessments, and view their own classroom-based 

assessments to best provide formative feedback (Huff et al., 2007).  They conclude with 
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discussion about lack of direction on use of diagnostic assessment in K-12 education and 

future directions which might hold promise: 

 
When assessing the demand for CDA from educators, it is important to recognize 
that they are not actually demanding that assessment developers use cognitive 
models as the basis for assessment design and reporting.  What educators are 
demanding is that they receive instructionally relevant results from any 
assessments in which their students are required to participate and that these 
assessments be sufficiently aligned with classroom practice to be of maximum 
instructional value (p. 24). 

 
 
 Thus, aligned assessments for diagnostic purposes are desired.  However, DCMs 

have also been retrofitted to existing non-diagnostic assessments (e.g., large-scale 

summative proficiency assessments) in multiple studies.  Henson et al. (2014) contend 

while retrofitting to existing assessments not intended for a DM purpose is still perilous, 

DCMs (and their extensions) can still be applied in prospectively designed 

multidimensional assessments where a content “blueprint” has been created by subject 

matter experts to cover a range of content areas within the span of desired knowledge 

domains.  Use of such a blueprint is common in test design practice as a means towards 

building content validity into assessments.  Thus, test developers and educators 

attempting to prescribe to CCSS are increasingly driving towards delivering assessments 

that potentially have some multidimensional aspects to them.  Rupp et al. (2010) remark 

that DCMs may provide a more direct method of proficiency diagnosis (because latent 

categorical attributes are explicitly modeled), which is a common goal of standard-

setting.  However, the validity of interpretations and uses of findings from DCMs hinge 

upon the confidence in if underlying assumptions have been adequately satisfied.   
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Like all LCMs, DCMs make the central assumption of LI.  Violation of LI due to 

systematic within-skill profile variation could induce inaccuracy of estimating skill 

profile attainment, thereby introducing invalidity into interpretations and use for DM.  

Potential sources of systematic within-skill profile variation could arise from the latent 

trait(s) truly being continuous, construct irrelevant variance or construct 

underrepresentation.  Phenomena related to construct irrelevant variance recognized in 

previous psychometric research (e.g., Henning, 1989; Ferrier et al., 2011) include: 

differential item functioning (DIF), test-wiseness, speededness, test related anxiety, 

fatigue, testing conditions, test exposure, item format, and poor item quality.  Phenomena 

related to construct underrepresentation include: extra multidimensionality (including 

item bundles/testlets) and issues with definitional grain-size of attributes (Rupp et al., 

2010).   

 If one or more of these sources are introduced through mixtures of underlying 

continuous abilities with nonzero variance then skill diagnoses could suffer, especially 

when the mixture distributions overlap non-trivially.  The current study will investigate 

this phenomenon, and delineate at what point practitioners should take caution in 

interpreting DCM results as mixture overlap increases.  The phenomenon is introduced 

through a multidimensional continuous-categorical item response model (MCCIRM) by 

way of extending the log-linear cognitive diagnosis model (LCDM) of Henson et al. 

(2009) to additionally include combinations of continuous abilities (cf. Henson, Templin, 

Willse, and Irwin, 2014).   
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Contribution of the Current Study 

The current study explored on the connections between mixture IRT and LCM 

suggested by Willse (2011) within the context of DM.  The effect of increasing 

systematic within-skill profile variation using DCMs induced by mixtures of continuous 

abilities on skill mastery classification is delineated. 

Research Questions and Hypotheses 

The four study research questions and six hypotheses are as follows: 

RQ1: Does increasing variance of continuous abilities in mixtures of mastery/non-

mastery groups cause detectable violations of local independence when performing 

diagnostic classification? 

H1: Increasing variance of continuous abilities generated from the MCCIRM is detected 

by increasingly large Yen’s Q3 statistics based on results from DCMs without continuous 

ability. 

RQ2: Does increasing variance of continuous abilities degrade model fit when 

performing diagnostic classification? 

H2: Increasing variance of continuous abilities within the MCCIRM substantially 

degrades item parameter recovery in LCDM estimates without continuous ability. 

H3: Increasing variance of continuous abilities within the MCCIRM leads to 

overestimation of attribute-to-attribute correlations under the LCDM without continuous 

ability. 

RQ3: Does increasing variance of continuous abilities lower accuracy of diagnostic 

classification? 
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H4: Increasing variance of continuous abilities within the MCCIRM substantially 

degrades proportion of correct diagnostic classification based on estimated LCDMs 

without continuous ability. 

RQ4: Are effects of increasing variance of continuous abilities on accuracy of diagnostic 

classification affected by complexity or compensation? 

H5: Complex structure substantially degrades proportion of correct diagnostic 

classification based on the LCDM without continuous ability when variance of 

continuous abilities within the MCCIRM increases. 

H6: Compensatory versus noncompensatory processes leads to substantially lower 

proportion of correct diagnostic classification based on the LCDM without continuous 

ability when variance of continuous abilities within the MCCIRM increases. 

Assumptions 

Throughout this study skills are synonymous with attributes, although attributes 

could be more broadly interpreted outside educational research.  Attribute profiles are 

synonymous with attribute patterns.  For notation, it is also assumed throughout that 

items are represented by the index i, examinees by e, latent continuous abilities by t, and 

attributes by a.   

This study investigates mixture-induced local dependence effects on diagnostic 

classification through one particular choice of psychometric measurement model: the 

MCCIRM.  However, other modeling mechanisms could have been used to investigate 

the study research questions, such as use of the general diagnostic model (abbreviated 

GDM; von Davier, 2005).  Validity of the current study findings would be in doubt if 
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conclusions were model dependent.  Future research could attend to investigating what, if 

any, differences arise when comparing MCCIRM versus GDM methods under equivalent 

conditions. 

Diagnostic classification models are assumed to be a useful methodology for skill 

mastery classification successfully when LI is not violated.  However, there are other 

factors affecting classification performance of DCMs reported by previous research that 

must be considered.  To minimize threats to validity of findings, these other factors 

examined in current study investigation are held constant or are attended to throughout 

study planning, execution, and dissemination. 

Further, violating LI when applying DCMs is assumed to be possible and can be 

detected by the empirical methodology employed within the study.  Although violating 

LI by design is performed, the detection of assumption violation will be attempted by 

existing methods recognized as appropriate in non-DCM scenarios.  These methods are 

selected based on review of current literature.   

Additionally, violating the key assumption of LI in DCM is hypothesized to 

lessen usefulness for its intended purpose: to successfully classify examinees into profiles 

of skills.  Therefore, appropriately gauging performance of DCM through appropriate 

metrics (e.g., proportion with correct classification) based on accepted modeling and 

estimation practices is important to investigate.  To this end, accepted methods of 

modeling, estimation, and reporting of classification are reviewed for completeness and 

appropriateness.   
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Items with only simple structure or average complexity of two were studied.  It is 

possible in practice that items can be of higher complexity, which could impact results of 

the current study.  Future research could examine scenarios where greater complexity is 

present. 

This study was limited to scenarios of large examinee sample size and with 

reasonably adequate ratios of items to attributes/abilities.  Yet, low-stakes formative 

assessment has been commonly suggested as one of the promising uses of DCMs.  In this 

case, many items or many examinees may not be available because the formative 

assessment may be occurring at the grade-level or classroom-level and therefore large-

scale testing scenarios are not occurring with such a prospective diagnostic purpose in 

mind.  Additional future studies could investigate how classification is degraded when 

fewer items are used or when sample size shrinks under equivalent conditions.  However, 

the findings from the current can provide a benchmark upon which to compare such 

studies to when less data are available. 

Another key assumption is that the intended DCM specification is correct 

otherwise and that all items follow the same DCM specification.  If a conjunctive, 

noncompensatory process is driving item responses then only those DCMs appropriate 

for these kinds of processes are utilized.  That is, the current study is also not 

concurrently investigating other effects of model misspecification in DCMs. 

Effects of findings for linking and equating test forms were not explored in this 

study.  Future research could attend to what consequences LI violations have on these 

common psychometric testing practices (Xu & von Davier, 2008; Rupp et al., 2010). 
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Further, it is assumed in this study that no other sources of heterogeneity such as 

DIF are present.  However, DIF can occur in practice whereby many previous researches 

have studied its effects under the IRT framework.  Bozard (2008) studied invariance 

testing in DCMs.  Future investigations can examine what impact DIF and other sources 

of heterogeneity could have on classification performance when also present 

concurrently. 

This study is limited to a perspective that the implemented assessment has been 

prospectively designed for diagnostic purposes and that a DCM has not been just 

retrofitted to a large-scale summated assessment for other purposes.  Henson et al. (2014) 

give a discussion of the latter with many relevant considerations.  Rupp and Templin 

(2008) have discussed limitations related to retrofitting diagnostic models to assessments 

built for other purposes. 

The current study also assumes that the test design item-to-attribute Q


 and item-

to-ability C


matrices have correct specifications, and that they avoid the problematic 

properties delineated in Madison and Bradshaw (2014).  Many previous authors (Rupp & 

Templin, 2008b; de la Torre, 2008; Kunina-Habenicht et al., 2012; Chiu, 2013) have 

discussed impact of Q-matrix misspecification on skill mastery classification under 

DCMs and offered various strategies.  Rigorous validation efforts, including qualitative 

studies of high quality (e.g., think-alouds), are necessary to verify correct Q-matrix 

specification according to item writing, cognitive processes, and skill definition (Madison 

& Bradshaw, 2014).  Future research could adapt these strategies to study their utility 

under the current study’s scenarios when within-mastery class variation is present.   
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A main assumption of the study methodology is that knowledge acquired from 

simulation findings will be applicable to real-word situations.  This assumption may not 

have teeth through a variety of threats to validity.  One threat is if simulation conditions 

are not similar to real-world scenarios.  This threat is attempted to be mitigated by proper 

identification and inclusion of real-world situations (i.e., simulation based on published 

model parameter estimates from applied studies using DCM on real assessment data).   

Finally, this study only examined the effects of increasing continuous ability 

variance for the diagnostic classification enterprise.  A similar companion study could be 

performed in the mixture IRT setting, whereby effects of shrinking continuous ability 

variance on rank-ordering examinees along ability continuum(s) could be investigated.  It 

could be hypothesized that as continuous ability mixtures become more “discretized” 

then rank-ordering performance could suffer non-trivially (e.g., Markon & Kruger, 2006).   



12 
 

CHAPTER II 

REVIEW OF THE LITERATURE 
 
 

Literature Review Methods 
 

Current methods of literature review were used according to Martella et al. 

(2013).  

The Connection of Mixture Item Response Theory and the Latent Class Model 

von Davier (2005) presents the general diagnostic model (GDM) which he 

conceptualizes as a generalized partial credit item response theory (IRT) model that could 

be used as a diagnostic classification model (DCM) when ability is constrained to -1 for 

nonmasters and +1 for masters.  Later, von Davier and Rost (2007) remark that mixture 

IRT resembles a latent class model (LCM) when variance of the latent ability distribution 

within the mixture IRT model goes to zero within each mixture.  Thus, when person 

parameters (ability) in mixture IRT are fixed to any constant, the model collapses to a 

LCM with the number of classes equal to the original number of mixtures.  Willse (2011) 

notes that an alternative interpretation of a mixture Rasch IRT model is an LCM with 

nonrandom within-class variation, which is a violation of an assumption denoted as local 

independence (LI).  First, IRT and DCM are introduced next and then their connections 

are further discussed. 
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Item Response Theory (IRT) 

IRT aspires to estimate an examinee’s standing on a continuous latent ability and 

parameters that characterize items (Lord & Novick, 1968; Lord, 1980; Finch, French, & 

Immekus, 2014).  IRT models can be divided into two broad categories: those that model 

scored items that are dichotomous and those that model polytomous items (Finch et al., 

2014).  Some researchers view IRT as an improvement over classical test theory (CTT) 

because item difficulty using p-values, discrimination using corrected point-biserial 

correlations, and examine sum scores are sample dependent and will change depending 

on examinee characteristics (Finch et al., 2014).  Additionally, error of measurement is 

assumed constant across the score range (Finch et al., 2014).   

Three central assumptions are made in IRT: (a) monotonically increasing 

relationship of probability of correct response and latent ability, (b) unidimensionality, 

and (c) local independence (cf. section on Local Independence in IRT below) (Finch et 

al., 2014).  The three-parameter logistic IRT model (3PL) is credited to Birnbaum (1957; 

1958).  It is an IRT model for dichotomous item responses and has the form (Hambleton, 

van der Linden, & Wells, 2010) 

 
 

     
 

exp θ
1 | θ 1

1 exp θ
i e i

ei e i i
i e i

a b
P X g g

a b

     
   

, (1) 
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Where: 

eiX  is the dichotomous item response to the i-th item for the e-th examinee where 1eiX 

for a correct response and 0eiX  for an incorrect response 

1, ,e E   for the e-th examinee 

1, ,i I   for i-th item 

θe  is the continuous latent trait (“ability”) for the e-th examinee 

ig  is the pseudo-guessing/lower asymptote parameter for the i-th item 

ia  is the discrimination parameter for the i-th item 

ib  is the difficulty parameter for the i-th item. 

If 0ig   for all items, then the 3PL reduces to the 2PL IRT model.  If for the 2PL 

model a common a parameter for all items is specified such that ia a , then the model 

becomes a 1PL IRT model.  Finally, if 1a  , then the IRT model is referred to as the 

Rasch model (Rasch, 1960).  The continuous latent ability can be thought of as a random 

effect for examinees and often is assumed to have a standard Normal distribution (i.e., 

 θ ~ 0,1e Normal ).   

Multidimensional IRT (MIRT) 

When there are multiple latent continuous abilities posited, a MIRT model may be 

considered.  Two types of MIRT models are discussed next: (a) compensatory (CMIRT) 

and (b) noncompensatory (NCMIRT).   
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Compensatory MIRT Model (CMIRT) 

 A form of the CMIRT model is given by (Chalmers & Flora, 2014) 
 
 

    1

1

exp θ

1 | θ , , , 1

1 exp θ

T

it et i
t

ei e i i i i i T

it et i
t

a d

P X a d g g g

a d





    
     
       



   

 
 
(2) 

 
 
Here, there is only one overall item difficulty parameter  id while there one item 

discrimination parameter  ita  per latent ability  θet .  Because contributions from 

individual abilities are strictly additive, the model is denoted as compensatory. 

Noncompensatory MIRT Model (NCMIRT) 

The form of the NCMIRT model is given by (Reckase, 2009) 
 
 

     
 1

exp θ
1 | θ , , , 1

1 exp θ

T
it et it

ei e i i i i i
t it et it

a d
P X a d g g g

a d

  
          


  

. (3) 

 
 

For the NCMIRT model, there is one item difficulty parameter and item 

discrimination parameter per latent ability (i.e., both subscripted by t).  Because 

contributions from individual abilities are multiplied in the product term, the model is 

denoted as noncompensatory. 
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Product MIRT Model 

Chalmers and Flora (2014) describe estimation for NCMIRT models and compare 

them to “product” MIRT models (pMIRT) with direct products of continuous latent 

abilities (cf. Eq.13 in Chalmers & Flora (2014)) to capture latent interaction effects for 

noncompensatory processes.  An example they describe with two abilities is (written 

using the logit of the probability) 

 

    1 1 2 2 12 1 2logit 1 | θ , , θ θ θ θei e i i i e i e i e e iP X a d a a a d     
 

. (4) 

 
 

They remark that this model can have a probability response surface similar to the 

NCMIRT model described above.  The form above resembles a LCDM with two 

attributes except here the latent variables are continuous abilities instead of categorical 

attributes.  Rupp et al. (2010) call the use of latent interactions to model processes that 

cannot be assumed compensatory as “effectively noncompensatory.”  Denoting 

discrimination parameters using  instead of a and fixing all pseudo-guessing parameters 

ig  to zero, the pMIRT model can be generalized to have T continuous abilities by  

 

    
1

1 1

logit 1 | θ , γ , γ θ γ θ θ ...
T T T

ei e i i it et itu et eu i
t t u t

P X d d


  

      
 

 
(5) 

 
Where the “+…” leaves over to higher-order product terms above just pairwise.  

However, Chalmers and Flora (2014) just investigated this model with only pairwise 

terms.   
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 Additionally, we can assume an I T  item-to-theta design matrix  C


 that is 

known a priori such that each of its elements 1itc   if the i-th item is measured by the t-

th continuous latent ability and 0itc   otherwise.  With these assumptions, Eq. (5) could 

then be expressed as 

 

  
1

1 1

logit 1 |θ ,γ , γ θ γ θ θ ...
T T T

ei e i i it et it itu et it eu iu i
t t u t

P X d c c c d


  

     
 

(6) 

 
 

Now, when all γitu  and other discrimination parameters for higher-order 

interactions are fixed to zero, the pMIRT model reduces to a 2PL C-MIRT model.  In this 

way, one might possibly test if any γitu  and above are significantly different from zero, 

which could provide empirical evidence as to if a compensatory assumption is reasonable 

(given model assumptions are satisfied).  Rupp et al. (2010) critique such statistical based 

approaches for this decision in the DCM setting, such as using AIC or BIC for improved 

fit with one assumption over the other because “ in practice, the data and theory are 

seldom at a level of quality needed.”  

Advantages of the pMIRT model (with up to only pairwise interactions of 

abilities) discussed by Chalmers and Flora (2014) included greater stability (i.e., higher 

convergence rates) and faster computing times relative to NCMIRT.  The disadvantages 

include poorer relative fit to a NCMIRT, and challenging parameter estimation especially 

for standard errors when sample size was 1,000 (less so for N = 2,500+).  One suggested 

reason for the poorer relative fit despite the pMIRT model possibly producing similar 
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probability response surfaces is that if γitu  becomes too large in magnitude, then even 

when θe
decreases the response surface may increase (Chalmers & Flora, 2014). 

Latent Class Models (LCMs) 

The diagnostic classification models discussed in this study are a form of LCM.  

In LCMs, examinees are assumed to belong to one of C discrete classes where c = 1,…, C 

and where class membership is unknown.  That is, unknown membership implies classes 

are latent and hence models for latent classes specify categorical latent variables.  The 

probability that the e-th examinee has a correct response to the i-th item, given that they 

are in the c-th latent class can be written as  1 | πei icP X c  (Rost, 1990; Rupp et al., 

2010).  Dichotomous or polytomous item responses for examinees can be observed for 

the latent class model.  Item responses are assumed to be conditionally independent given 

membership in the c-th latent class (Skrondal & Rabe-Hesketh, 2004).  Focusing on 

dichotomous responses only, Rupp et al. (2010) remark that estimates of πic can also be 

interpreted as the item difficulty, which again is class-specific (Rupp et al., 2010).  Here, 

the LCM can be written as (Rupp et al., 2010) 

 

   1
1 1

π 1 π eiei

C I
xx

e e c ic ic
c i

P X x  

 

   
 

 

(7)
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Where: 

ex


 is the observed response pattern across all I items for the e-th examinee 

1, ,e E   examinees 

1, ,i I   items 

eix  is the observed scored response for the e-th examinee on the i-th item 

c  is the latent class membership probability for the c-th class (“mixing proportion”) 

1, ,c C   latent classes where class membership is latent and not known a priori 

1
1

C

cc



  so there are 1c   latent class membership probabilities to be estimated 

πic is the probability of a correct response to the i-th item for an examinee given that they 

belong to latent class c (i.e.,  π 1|ic eiP X c  ).   

For each latent class, the product term above provides the joint probability of a 

particular response pattern (Rupp et al., 2010).  Hancock and Samuelsen (2008) give 

more details on LCM and extensions thereof. 

Diagnostic Classification Models (DCMs) 

Rupp and Templin (2008) define DCMs as the following: 
 
 
Diagnostic classification models (DCM) are probabilistic, confirmatory 
multidimensional latent variable models with a simple or complex loading 
structure.  They are suitable for modelling observable categorical response 
variables and contain unobservable (i.e., latent) categorical predictor variables.  
The predictor variables are combined in compensatory and noncompensatory 
ways to generate latent classes.  DCM enable multiple criterion-referenced 
interpretations and associated feedback for diagnostic purposes, which is typically 
provided at a relatively fine-grain size.  This feedback can be, but does not have 
to be, based on a theory of response processing grounded in applied cognitive 
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psychology.  Some DCMs are further able to handle complex sampling designs 
for items and respondents, as well as heterogeneity due to strategy use. 
 
 
Henson (2009) argued that DCMs do not enable criterion-referenced 

interpretations but rather are norm-referenced, and that classification into mastery groups 

are sample dependent.  The same three authors later defined DCMs to be: “Statistical 

models with discrete latent variables that are used to classify respondents into one of 

several distinct latent classes associated with distinct attribute profiles” (Rupp et al., 

2010).  This definition of DCMs is assumed throughout the remainder of this study.   

The first task in DCMs can be to estimate the various  1 | πei icP X c  of the 

LCM through proposed item response models with categorical latent variables for 

attributes after imposition of constraints (and therefore are confirmatory in nature).  Then, 

through a chosen structural model, the mixing proportions c  are estimated and attribute 

profile and marginal attribute mastery are computed.   

Use of DCMs for Diagnostic Measurement 

Rupp et al. (2010) define diagnostic measurement (DM) to be, “The 

determination of whether respondents have mastered/possess several attributes with the 

aid of a diagnostic assessment and a suitable latent-variable model.”  The same authors 

define a diagnostic assessment to be an assessment that is designed to provide 

classifications of respondents (Rupp et al., 2010).  Diagnosis is defined to be the act of 

precisely analyzing a problem and identifying its causes for the purpose of classification-

based decision making (Rupp et al., 2010).  With these three definitions explicated, 
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DCMs are posited to provide an appropriate mechanism by which to perform DM for 

skills’ mastery diagnosis.   

Condensation Rules for DCMs 

 A condensation rule describes the relationship between observed and latent 

random variables (Maris, 1995; Maris, 1999).  They afford a prescription of how skills 

are “condensed” (i.e., combined) to produce a latent response for a given DCM (Rupp et 

al., 2010).  Maris (1995) defined three condensation rules still currently considered in 

DCM: (a) conjunctive, (b), disjunctive, and (c) drop-off.  Let skill mastery of the a-th 

skill be denoted as 1a   and non-mastery as 0a   for a = 1, 2,…, A skills.  The 

current study adopts these definitions for describing how latent skills combine, and 

according to the following adapted from Rupp et al. (2010) and Zhao (2013): 

 
Table 1. Definition of Model Types and Their Possible Condensation Rules  
 

Model Type 
Condensation 
Rule Mathematical Form Interpretation 

Compensatory Disjunctive 

 
1

1 1
A

a
a




    
  

At least one of the 
skills has to be 
applied (and can 
compensate for 
lack of other skills) 

    
Noncompensatory Conjunctive 

1

A

a
a



  

All of the required 
skills have to be 
applied 
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Model Type 
Condensation 
Rule Mathematical Form Interpretation 

Noncompensatory Drop-off = 0 if 1 = 0 
= 1 if 1 = 1 and 2 = 0 
  
= A if 1 = 2 = … = A = 1 
 

For polytomous 
condensation. 
Process involves A 
components 
executed 
sequentially.  
Passing component 

1a  only possible 
if the a-th 
component was 
also passed. 

 

Only conjunctive and disjunctive condensation rules as defined above are 

considered in the current study since all studied DCMs here have dichotomous condensed 

evaluands, as discussed in Rupp et al. (2010).  Almond and Shute (2009) remark that 

performance is dominated by the weakest skill in the conjunctive rule and dominated by 

the strongest skill under the disjunctive rule.  They also consider other rules not discussed 

further in the current study. 

An Introduction to Core DCMs 

There are multiple studies that give excellent introductions to common DCMs 

such as Rupp and Templin (2008), Henson et al. (2009), and Rupp et al. (2010).  “Core” 

DCMs (Rupp et al., 2010) studied further are now discussed, and follow similar 

description as in these works.   

Deterministic Input Noisy “And” Gate (DINA) 

The DINA model (Macready & Dayton, 1977; Haertel, 1989; Junker & Sijtsma, 

2001) is a common model investigated in DCM literature, likely due to its accessible 

interpretation.  The DINA model maps examinee skill sets onto expected item responses 
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by use of an item-by-skill Q-matrix (Tatsuoka, 1985), which is specified a priori.  The Q-

matrix is an I × A matrix of indicators, iaq , of whether the a-th skill (a = 1,…, A) must be 

mastered for i-th item (i = 1,…, I) to be correctly answered by an examinee (Tatsuoka, 

1985).  Given the Q-matrix, the DINA models the probability of a correct response,

1eiX  , for the e-th examinee (e = 1,…, E) to item i as 

 

     11| 1 ei ei
eei i iP X s g

   
 
 

  
  (8)

 
 

The expected item response pattern of the e-th examinee is  1 2, ,...,.e e e eI   


, 

where ei  is a latent variable for the e-th examinee possessing all required attributes for 

answering the i-th item.  It is the deterministic input of the DINA model, and has been 

referred to as the condensation kernel (Rupp et al., 2010).  Here, the i-th entry of the 

expected response pattern for the e-th examinee is defined as 

 

1

ia
A

q
eaei

a
 


 , (9)

 
 

Where a skill is represented by ea and the respective Q-matrix entry by iaq .  The 

skill ea is an entry in an attribute profile vector, e


, for the e-th examinee and is 1 if the 

a-th attribute has been mastered and is 0 if not mastered.  Thus, the DINA model is a 

multidimensional binary latent trait model that requires all attribute skills to be mastered 



24 
 

in order for the latent ideal response pattern entry 1ei  .  Because all skills must be 

mastered for 1ei  , this model uses a conjunctive condensation rule and is considered 

noncompensatory (i.e., cannot compensate for lack of one skill by way of another skill). 

The DINA model has two item-specific parameters to be estimated which are 

assumed to be the same across attributes: slipping ( is ) and guessing ( ig ).  In the above, 

slipping is defined as the probability of an observed incorrect item response when in fact 

the examinee possesses all the required skills or attributes for the item (i.e., 

 0 | 1i ei eis P X     where ei  is defined as above).  Guessing is defined as the 

probability of an observed correct item response when in fact the examinee does not 

possess at least one desired attribute:  1 | 0i ei eig P X    . 

The unique e


’s from the DINA model are the latent classes where classification 

into mastery or non-mastery is desired.  There exists 2A possible e


.  Like other DCMs, 

it is assumed that for the e-th examinee, the item responses 1 2, ,...,e e eIX X X  are 

conditionally independent given e


 (de la Torre, 2009; Wang & Douglas, 2013).  

Finally, there is one is  and one ig  parameter per item with equality constraints imposed 

across attributes, and slipping and guessing is subject to the order constraint that 

 1 i is g   (de la Torre, 2009).  In sum, for each item there are only two uniquely 

determined parameters affecting response probabilities in the DINA model: is  and ig .   
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Compensatory Reparameterized Unified Model (CRUM) 

 The CRUM (Hartz, 2002; Henson et al., 2009) is a special case of the general 

diagnostic model (von Davier, 2005), where the logit of probability of correct response is 

given by 

   * *

1

logit 1|
A

ia ea ia i
a

eei r qP X  


 
 , (10)

 
Where all * 0iar  .  This model is partially compensatory as not possessing other skills (

0ea    for a a  ) does not impact the contribution on remaining necessary skills 

(Henson et al., 2009).   

Deterministic Input, Noisy “Or” Gate (DINO) 

 The DINO model (Templin & Henson, 2006) is the analogous compensatory 

version of the DINA model (Rupp et al., 2010).  The following disjunctive condensation 

kernel is used: 

 

 
1

ω 1 1 ia
A

q

ei ea
a




      (11)

 
 
This disjunctive condensation kernel implies that possessing at least one attribute can 

completely compensate for the lack of all others (Rupp et al., 2010).  Given this, the 

DINO probability of correct response is defined as 

     ω 1 ω1 |ω 1 ei ei

ei ei i iP X s g    , 
(12)
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Where slipping and guessing are now defined as: 
 

 0 |ω 1i ei eis P X    
(13)

 
 
And 

 1 |ω 0i ei eig P X   . 
(14)

 
 
 Like the DINA, the DINO model constrains slipping and guessing to be the same 

across attributes.  Again for each item there are only two uniquely determined parameters 

affecting response probabilities: is  and ig . 

The Log-Linear Cognitive Diagnosis Model (LCDM) 

The LCDM of Henson et al. (2009) defines a family of DCMs using a loglinear 

with latent variable modeling specification (Haberman, 1974; Haberman, 1979; 

Hagenaars, 1993).  The functional form of the LCDM is given as 

 
 

 
 
 

T
0

T
0

exp λ h , λ
1 | ,λ ,

1 exp λ h , λ

i i e i

ei e i i

i i e i

q
P X

q


 



   
   

 
 

 

, 
(15) 

 
 
Where 
 
 
 

 
1

T

1 1

λ h , λ λ ...
A A A

i i e ia ea ia iab ea ia eb ib
a a b a

q q q q   


  

   
 

 
(16) 
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And where model terms are defined by: 

eiX  is the scored item response for the e-th examinee on the i-th item, where 1eiX   for a 

correct response and 0eiX   for an incorrect response 

1,2,...,e E  for the E examinees 

1,2,...,i I  for the I items 

e
 is a vector of length A of categorical latent attributes for the e-th examinee 

 Tλ h ,i i eq 
 

 is the kernel for the LCDM and is defined by the above so that: 

0λ i is the logit of correct response for the i-th item when no attributes have been mastered 

(intercept term).  It should be noted that 0λ i i   as some prior research uses i .   

ea  is the categorical latent attribute for the e-th examinee for mastery of the a-th 

attribute, so that 1ea   if the e-th examinee has mastered attribute a and 0ea 

otherwise.  Here, a = 1, 2, …, A for the A attributes 

λ ia  is the weight (logit increment) for item i on the a-th categorical latent attribute ea  

iaq  is an indicator variable for whether the i-th item requires the a-th categorical latent 

attribute, so that 1iaq   if the i-th item requires the a-th attribute and 0iaq   otherwise. 

λ iab  is the weight (logit increment) for the pairwise interaction of the a-th categorical 

latent attribute ea  and the b-th categorical latent attribute eb  (b > a) for the i-th item 

“+…” represents higher-order interaction terms above pairwise (up to the A-th way 

interaction).   
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Using Eq. (24) with up to third-order interactions, Eq. (23) can equivalently be 

represented by way of the logit of correct response,   0logit 1 | ,λ ,λei e i iP X 
 

, given 

by 

 
1

123 1 1 2 2 3 3 0
1 1

λ λ λ λ
A A A

ia ea ia iab ea ia eb ib i e i e i e i i
a a b a

q q q q q q     


  

    (17) 

 
 
This representation of the LCDM is referred to as the saturated LCDM in the current 

study. 

LCDM Representations of Core DCMs 

Rupp et al. (2010) remark that “Constraints can be placed on the parameters in λ i
 

so that the probability of a correct response increases in accordance with the DCM that is 

represented by the LCDM.”  Thus, the core DCMs previously discussed can be 

represented by the LCDM framework.  LCDM representations are described next for 

these core DCMs: the DINA, CRUM, and DINO.   

DINA Representation in the LCDM 

The DINA model can be represented as an LCDM with all main effects set to zero 

and positive interaction terms.  The functional form of the DINA LCDM for three skills 

is given by 

 

  0 123 1 1 2 2 3 3 0logit 1 | ,λ ,λ λ λei e i i i e i e i e i iP X q q q     
 

 (18) 
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The relationships to the original DINA model item parameters (for two attributes case) 

are described in Henson et al. (2009) and are given by 

 

0λ ln
1

i
i

i

g

g

 
   

 (19) 

 
 
And 
 
 

 

 

1
λ ln ln

1
i i

iab
i i

g s

g s

   
        

 (20) 

 
 
CRUM Representation in the LCDM 

The CRUM can be represented as an LCDM with all interactions set to zero and 

positive main effects.  Therefore, the functional form of this restricted LCDM is given by 

 

  0 0
1

logit 1 | ,λ ,λ λ λ
A

ei e i i ia ea ia i
a

P X q 


  
  . (21) 

 
 
DINO Representation in the LCDM 

With up to three-way interaction effects, the DINO model can be represented as 

an LCDM with all main effects and interactions set with equality constraints, and further 

where main effects are positive, two-way interactions are negative, and the three-way 

interaction is positive.  Given these constraints, the functional form of the DINO LCDM 
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parameterization for the   0logit 1 | ,λ ,λei e i iP X 


is given by (putting the negative 

sign outside of double-sum) 

 
1

1 1 2 2 3 3 0
1 1

λ λ λ λ
A A A

i ea ia i ea ia eb ib i e i e i e i i
a a b a

q q q q q q     


  

    . (22) 

 
 
When higher than three-way interactions are considered (but not studied here), the sign of 

the λ i  for these higher-order interaction effects alternates as described in Henson et al. 

(2009).   

Relationships of Core DCM Parameterizations to LCDM Representations 

 The LCDM representations of the three core DCMs considered in this study have 

been explicated, but the relationships to each models original parameterization are import 

to further consider.  Knowing these, previously reported estimates from the original 

models could be further incorporated into the current study.  The following table 

describes the relationship of item parameters in the original core DCMs relative to their 

LCDM representations for the case where two attributes are required by items 

(complexity = 2): 
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Table 2. Conversion of Core DCM Parameters to Equivalent LCDM Representation 
Parameter* 

 

Model 
Original 

parameter 
Original Parameter to 
LCDM representation 

LCDM representation 
to Original Parameter 

DINA is   
 

0

0

exp

1 exp
i iab

i
i iab

s
 
 

 


  
 

1
ln ln

1
i i

iab
i i

g s

g s


   
        

 

 ig   
 

0

0

exp

1 exp
i

i
i

g






 0 ln
1

i
i

i

g

g


 
   

 

 
CRUM *

iar  *
ia iar   *

ia iar   

 *
i  *

0i i    *
0i i    

 
DINO is   

 
0

0

exp

1 exp
i i

i
i i

s
 
 

 


  
 

1
ln ln

1
i i

i
i i

g s

g s


   
        

 

 ig   
 

0

0

exp

1 exp
i

i
i

g






 0 ln
1

i
i

i

g

g


 
   

 

*Note. Derivations made under assumption items require two attributes (complexity = 2).  
 
 

Impact of Simple versus Complex Structure on LCDM Representations 

 Under complex structure, defined to be any item requiring more than one 

attribute, the above formulae describe the LCDM representations of the three core DCMs 

studied.  Under simple structure, defined to be all items each requiring only one attribute, 

all of the LCDM representations reduce to be the same model given by 

 

  0 0
1

logit 1 | ,λ ,λ λ λ
A

ei e i i ia ea ia i
a

P X q 


  
  . (23) 

 
 
Thus, only this one model representation has to be considered in this case. 
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Applied DCM Studies in the Literature 

 There have been many technical studies on DCMs reported that have focused on 

statistical and psychometric aspects usually performed with simulation studies.  It is 

promising that recent literature has seen a substantial growth in DCM application studies, 

which were reviewed to inform the current study.  The following table provides details of 

recent studies, their scope and DCM(s) utilized, sample, and range of item parameter 

estimates reported. 

 
Table 3. Applied DCM Studies from Previous Literature and Range of Item Parameter 

Estimates 
 

Author(s) Sample 
No. Items / No. 
Attributes DCM(s) used 

Range of 
estimates 

Bradshaw et 
al. (2014) 

990 5th-7th 
grade teachers 
(for fraction 
arithmetic) 

27 items (MC; 
few CR) / 4 
attributes (19 
simple items, 8 
complexity=2) 

LCDM 
(saturated) 

i : mean=     

-1.38 

ia : mean= 

1.40 to 3.23 

iab : mean= 

1.41 
de la Torre & 
Douglas 
(2004)* 

Fraction 
subtraction for 
2,144 students 
(Tatsuoka, 
2002) 

20 items / 8 
attributes (up to 
complexity=5) 

Higher-order 
DINA 

is = 0.04 to 

0.33; 

ig = 0.00 to 

0.44 

Henson & 
Templin 
(2007), Feng 
et al. (2014) 

ESL using 
ECPE 
assessment on 
2,922 
examinees 

28 items / 3 
attributes 
(average 
complexity = 
1.32 items per 
attribute) 

Reduced RUM 
in Feng et al. 
(2014) 

π*: 0.70 to 
0.97 
r*: 0.36 to 
0.92 across 
skills 

Henson, 
Templin, 
Willse, & 
Irwin (2015) 

2318 students 
on Reading 
EOGs 

73 items / 2 
attributes 

Categorical 
Bi-factor 
(constrained 
MCCIRM) 

Not presented 
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Author(s) Sample 
No. Items / No. 
Attributes DCM(s) used 

Range of 
estimates 

Jang (2009a) 2,703 test takers 
of L2 reading 
comprehension 
TOEFL 
internet-based 
test 

37 items / 9 final 
skills (range 
from 4 items per 
skill to 12) 

Fusion model 
(maximum 
complexity = 
3) 

π*: 0.56 to 
0.99 
r*: 0.34 to 
0.84 across 
skills 

Jurich & 
Bradshaw 
(2014) 

Higher Ed: 
Proficiency in 
evaluating 
psychosocial 
research; 1,710 
students at 2 
time points 

17 items / 4 
attributes 
(simple 
structure)  

LCDM 
i : -1.248 to 

0.938 (mean 
= -0.310) 

ia : 0.540 to 

3.341 
(average = 
0.859 to 
1.602) 

Kim (2011) 480 essays for 
English for 
Academic 
purpose 
(TOEFL iBT) 
with 10 
teachers 

35 descriptors 
(with 2 prompts) 
/ 5 skills  

Reduced RUM 
(complexity = 
3 or less 
except for 1 
item loading 
on all 5 skills) 

π*: 0.54 to 
0.99 
r*: 0.05 to 
0.88 across 
skills 

Kunina-
Habenicht et 
al. (2009) 

464 German 3rd 
and 4th graders 
in 10 classes in 
6 schools on 
math 

8 to 27 per skill 
/ 5 skills 

2-parameter 
GDM 

GDM 
loadings 
range from 
0.51 to 0.99 

Lee & Sawaki 
(2009) 

Listening & 
Reading from 
TOEFL iBT for 
3,139 ESL 
students 

Listening: 34 / 4 
Reading: 39 / 4   

PC-GDM,  
Fusion model, 
cLCA 

Not presented 

Li & Suen 
(2013) 

2,019 students 
for Reading 
comprehension 
of ELA in 
Michigan  

20 reading items 
/ 5 skills (2 
items 
complexity=3, 
rest split 
between 
simple/complex)

Fusion model π: 0.619 to 
0.995 
r*: 0.237 to 
0.958 across 
skills 



34 
 

Author(s) Sample 
No. Items / No. 
Attributes DCM(s) used 

Range of 
estimates 

Templin & 
Henson 
(2006) 

593 potential 
college 
underclassmen 
pathological 
gamblers 

41 items / 10 
attributes 
(criteria) 
(average of 5.5 
items per skill) 

DINO 
(average 
complexity = 
1.34) 

is : 0.08 to 

0.66 

ig : 0.01 to 

0.56 
(cf. Table 4) 

Zhao (2013) 3 sets: (1) 
Fraction 
subtraction, (2) 
Math in TIMSS 
2007 1,131 4th 
graders, (3) 
FCSA 2011 in 
1,629 middle & 
high school US 
students 

(1) 20 / 8 
(2) 23 / 15 
(3) 20 / 5 

DINA,  
Fusion model 

(1)  

is : 0.03 to 

0.33, ig : 0.01 

to 0.48, π*: 
0.72 to 0.99, 
(mean = 0.93)
r*: 0.00 to 
0.95 across 
skills 
(mean: 0.01 
to 0.40) 
(2)  

is : 0.03 to 

0.90, ig : 0.00 

to 0.76, π*: 
0.11 to 0.99, 
(mean = 0.80)
r*: 0.00 to 
0.97 
(mean: 0.02 
to 0.44) 
across skills 
(3)  

is : 0.01 to 

0.63, ig : 0.24 

to 0.81, π*: 
0.41 to 0.99, 
r*: 0.00 to 
0.95 
across skills 

  *Note. Primarily simulation study.  
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 Many of the technical studies that were primarily simulation based also typically 

reported an application to real assessment data, even if retrofitted after the fact to an 

assessment engineered to be unidimensional and for the purpose of rank-ordering 

examinees along an ability continuum.  These studies are not enumerated in the above 

table, except for de la Torre and Douglas (2004) which reported one of the first DCM 

applications on a heavily cited data source: the fraction subtraction data of Tatsuoka 

(2002).  The remainder of the studies reported on DCM applications in prospective 

studies for skill mastery diagnosis.  Their range of estimates provides real-word linkages 

based on relationships to their corresponding LCDM representations for describing logit 

separation between mastery groups.   

Assessing Fit of DCMs 

 One of the most salient issues facing current research efforts using DCMs has 

been fit assessment, including item fit, person fit and globally for model fit.  Many 

studies have focused on validation of the specified Q-matrix, and how certain 

misspecifications impact estimation and ultimately classification.  A novel study by 

Madison and Bradshaw (2014) looked at impact of different designs of correctly specified 

Q-matrices on classification and made recommendations.  The following table describes 

studies in the current literature that have examined DCM fit assessment from various 

perspectives: 

  



36 
 

Table 4. DCM Fit Studies  
 

Author(s) 

Item, Person, 
or Model fit 
examined? 

DCM(s) 
used 

Measures of 
Fit 

Relevant 
Conclusions 

Chen, de la 
Torre, & 
Zhang (2013) 

Model DINA, 
DINO, R-
RUM,  
G-DINA 
(equivalent 
to earlier 
presented 
LCDM) 

LL, AIC, BIC, 
residuals based 
on p-values, 
log-OR item 
pairs or 
correlations 

AIC and BIC 
picked true or 
saturated models; 
correlation and 
log-OR had 
comparable 
performance 

de la Torre & 
Douglas 
(2004) 

Item and 
Model 

DINA, 
higher-order 
DINA 

pairwise log-
ORs and Bayes 
factors 

Supported higher-
order DINA where 
appropriate 

de la Torre & 
Lee (2013) 

Item DINA, 
DINO 

Wald test “Excellent” power 
when sample size 
is sufficiently high 
for these DCMs. 

Henson et al. 
(2015) 

Item and 
Model 

LCDM, 
Categorical 
Bifactor  
(with simple 
structure) 

AIC, BIC, 
residuals, 
Yen’s Q3, 
eigenanalysis  
permuted Q-
matrix 

The chosen fit 
measures 
adequately convey 
improved model 
fit where it 
conceptually 
should. 

Kunina-
Habenicht et 
al. (2012) 

Item and 
Model 

LCDM Newly 
proposed 
MAD (cf. Eq. 
(3)) 
RMSEA (cf. 
Eq. (4)) 

More sensitive to 
overspecification 
of Q-matrix than 
underspecification. 
AIC, BIC 
sensitive to both. 
Excluding true 3-
way interactions 
did not affect 
classification.  
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Author(s) 

Item, Person, 
or Model fit 
examined? 

DCM(s) 
used 

Measures of 
Fit 

Relevant 
Conclusions 

Jurich (2014) Model LCDM Limited 
information 
(LI) 
M2, RMSEA 

Full information 
fit is problematic 
for realistic test 
lengths. Both M2 
and RMSEA 
performed well for 
fit in LCDM 
(unlike for MIRT) 

Madison & 
Bradshaw 
(2014) 

Model LCDM Only examine 
convergence 
rates, 
classification 
performance, 
and reliability 

At least 1 
factorially simple 
item per skill is 
required for 
identification. Not 
all Q-matrix 
designs are equal 
in quality. 

Rupp et al. 
(2010) 

Item, Person,  
and Model 

All core 
DCMs and  
the LCDM 

AIC, BIC, 
Resampling, 
Posterior 
predictive 
model 
checking 
(PPMC), LI 
statistics, 
Person fit 
statistics.  

As of 2010, 
assessing DCM fit 
is an evolving 
field. If the DCM 
does not fit or the 
Q-matrix is 
misspecified, then 
LI can be violated. 

Sinharay & 
Almond 
(2007) 

Item and 
Model 

2-Parameter 
Latent Class 
(2LC) 
Model 

Bayesian 
residuals,  
PPMC  

PPMC can be 
successively used 
to evaluate fit   
(but may be slow) 

Templin & 
Henson 
(2006) 

Item and 
Model 

Higher-
order DINO 

Monte Carlo, 
RMSEA of 
Pearson r, 
Cohen’s  
(cf. their Eq. 
(5)) 

Practical methods 
for model fit in 
DCM remains an 
open research 
question.  
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Author(s) 

Item, Person, 
or Model fit 
examined? 

DCM(s) 
used 

Measures of 
Fit 

Relevant 
Conclusions 

Zhao (2013) Model DINA, 
fusion 
model 

Posterior 
predictive 
model 
checking using 
NC as measure 
of discrepancy 

Choice of 
discrepancy 
measure for 
PPMC is 
important;  
Person-fit 
measures are not 
widely used. 

 
 

It is evident that there is wide heterogeneity in approaches to assessing fit for 

internal structure validity in DCMs, so that the more recently proposed approaches could 

be recommended.  Commonalities among approaches are that: (a) global model fit is 

often assessed (although in alternative ways), (b) calls remain for increased research into 

model fit methods, and (c) methods for assessing violation of local independence are 

lacking (exceptions are Hansen, 2013 and Henson et al., 2015). 

Implementation of DCMs 

There are multiple software platforms that facilitate estimation of DCMs.  

Templin and Hoffman (2013) describe how to estimate LCDMs using a SAS® macro 

(which is freely available) to call Mplus (Muthén & Muthén, 1998-2012) software and 

store results in created SAS® datasets.  Shu, Henson, and Willse (2013) used the 

‘LCDM.exe’ software package of Henson (2008) to estimate LCDMs.  Zhao (2013) used 

OpenBUGS to estimate the DINA model using MCMC and provided code.  The 

flexMIRT® software (Houts & Cai, 2013) uses a general modeling framework described 

as 
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  
 1

1 1 1 2 1 2

1 1 2

1

,
1 1 1 1

logit 1 | , ...
a pA A

i a a a a a a a a
a a a a

P y x x x x     


   

        
 

(24) 

 
Where x ’s are latent 0/1 attributes,  ’s are latent continuous variables, and +…+ 

indicates higher-order interaction terms.  Examples of implemented DCMs that come 

with flexMIRT include: C-RUM, DINA, DINO, and a testlet DINA model.  Fitting 

DCMs via the GDM is available using the mdltm software (von Davier, 2005; von Davier 

& Xu, 2009).  Finally, the R package ‘CDM’ Robitzsch et al. (2013) is freely available, 

which can estimate the DINA, DINO, GDINA, polytomous GDINA, and GDM models.  

The ‘NPCD’ package (Zheng, Chiu, & Douglas, 2013) in R can be used for 

nonparametric distance-based classification as described in Chiu and Douglas (2013). 

 This study uses Robitzsch et al. (2013) CDM package in R for estimation.  

Robitzsch et al. (2013) remark that estimation using the expectation-maximization (E-M) 

algorithm is performed based on de la Torre (2011). 

The Assumption of Local Independence 

 Equation (7) gave the joint probability of the observed response pattern in the 

LCM.  This equation only holds when the assumption of local independence (LI) is 

tenable.  The direct implication of this assumption allows one to estimate this joint 

probability using the product term of all πic , which is the probability of correct response 

to the i-th item for an examinee member of the c-th latent class.  If this assumption is 

violated, then this measurement portion of the latent class model breaks down.  Without 

this, we could not then sum across the mixing proportion estimates to arrive at the joint 
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probabilities of item response strings because the product term would not be accurate.  

Because all DCMs discussed in this study have been previously defined as a form of 

LCM, violating LI could invalidate the resulting diagnostic classification.  Forms of 

independence including LI are discussed in more detail next. 

Independence of Probabilistic Events 

A countable number of n events (e.g., an item response on a test), 1 2, , , nE E E , 

are defined to be mutually independent (MI) if and only if the probability of their joint 

occurrence (i.e., joint probability) is given by the product of the probabilities of each of 

the events given by 

 

   1 2
11

, , ,
n n

i n i
ii

P E P E E E P E


    
 

  (25) 

 
 
This is known as the multiplication rule for mutually independent events.  An event Ei 

could be a test response.  A less restrictive form of independence is pairwise 

independence (PI).  Here, a countable number of events are pairwise independent if and 

only if every pair of events, j and k, are independent as described by 

 

       ,j k j k j kP E E P E E P E P E    (26) 

 
 
It should be explicitly stated that MI implies PI is satisfied.   
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Conditional Independence 

Dawid (1979; 1980) gives treatment of conditional independence.  The definition 

of pairwise conditional independence is given as 

 

       | | , | | |j k i j i k i j i k iP E E E P E E E E P E E P E E   , (27) 

 
 
For all i j k  .  In the context of DCM this can be represented by 
 
 

       1  1 | 1 | , 1 | 1 | 1 |ei ei ei ei ei eiP Y Y P Y Y P Y P Y              
    

 (28) 

 
 
For all items i i  and where 1eiY   is a correct response to the i-th item for the e-th 

examinee and 


 is the vector of dichotomous latent skills. 

Local Independence in IRT 

In IRT literature there have been different forms of LI discussed.  The “Strong” 

form of local independence is given by (Embretson & Reise, 2000) 

 

   
1

| θ | θ
I

i i
i

P X x P X x


  
  , (29) 

 
 
Where x


 is the examinee’s vector of responses and x  is their response to the i-th item.  

Here, knowing that a person gets an item correct does not change the conditional 

probability of getting any other item correct.  There is also a “Weak” form of local 

independence, given by (Embretson & Reise, 2000) 
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 Cov , | θ 0i iX X   , (30) 

 
 
For all items i i .  This indicates that pairs of items share no covariance once the latent 

trait(s) have been accounted for.  This is a weaker form of LI because higher order 

dependencies among items are allowed here but not in the Strong form of local 

independence above.   

The LI assumption is the foundation for model-fitting algorithms that can provide 

goodness-of-fit indices and terms for residual covariance.  Specifically, IRT assumes the 

Strong form of local independence since it is “full-information” as it models the entire 

response string.  Factor analysis of categorical variables assumes the Weak form of local 

independence since it is “limited-information” as it models the item covariances (and 

possibly means) which are summary statistics (rather than item response strings directly 

from raw data). 

 Stout (1987) and Stout (1990) suggested that a state of “essentially 

unidimensional” is enough to satisfy IRT assumptions.  Here, a test is considered 

essentially unidimensional when the average between-item residual covariances after 

fitting a one-factor limited-information model approaches zero as the length of the test 

increases.  Therefore, this notion of essentially unidimensional is under a Weak form of 

LI.  Consequently, a test can be considered essentially unidimensional if LI 

approximately holds in a sample of test takers who are approximately equal on the latent 

trait.  Stated another way, just because a test is essentially unidimensional does not mean 

the Strong form of LI has been satisfied.   
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To understand what impact violations of local independence can have on IRT, one 

can inspect the likelihood equation used to estimate IRT model parameters.  In general, 

the likelihood is given by the joint probability of observing each scored item response 

 

   1 1 2 2data | parameter value , , , | θI I eL L X x X x X x    (31) 

 
 
This joint probability can only be broken down into the multiplication of the conditional 

probabilities of each item response given the value of the latent trait if the Strong form of 

LI using Eq. (29) can be assumed, and is described by 

 

      1

1

| θ | θ 1 | θi i
I

x x

e ei e ei e
i

L X P P




   (32) 

 
 
Local Independence in DCMs 

Lazarsfeld and Henry (1968) define local independence for LCMs to mean that 

within a class items are all independent of one another.  This implies mutual 

independence of the strong form and not just item pairwise independence as in the Weak 

form (Lazarsfeld & Henry, 1968).  However, the following quote underlines that no latent 

variable model would likely perfectly account for the associations among manifest 

variables in practice, “In nearly every social science application, we are quite sure, a 

priori, that no manifest observation will be completely determined by the assumed 

position of a respondent on an underlying latent scale” (Lazarsfeld & Henry, 1968). 
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While it is hard to disagree with this, the practical question is: What level of 

systematic variation causes a violation of the latent model assumption that items are 

independent after accounting for class?  Henning (1989) provides a nontechnical 

treatment of LI regarding.  Lazarsfeld and Henry (1968) went into depth about this 

assumption in their treatment of latent structure models: 

 
A series of accounting equations links the latent parameters and the empirically 
observed response frequencies.  These equations derive from the central 
substantive idea of the whole system, called the principle of local independence, 
following a suggestion of Mosteller. 

 
 
They describe local independence starting with the following set of equations 
 
 

     ,P I i J j P I i P J j       (33) 

 
 

Which is subsequently represented symbolically as ij i jp p p .  However, their 

description also included other non-pairwise relationships between the joint and marginal 

probabilities: 

 

1,2, , 1 2 .

ij i j

ijk i j k

J J

p p p

p p p p

p p p p





  





 
(34) 

 
 
Thus, Lazarsfeld and Henry (1968) define LI as the Strong form for latent structure 

models (i.e., conditional mutual independence).  For DCMs in particular, the joint 
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distribution of item responses given the parameters in the latent space (the skill profile 

vectors 


and model parameters 


) under the conditional LI assumption can be written 

as: 

 

   1 1 2 2
1

,  , , | ,  | ,  
I

e e e e eI eI ei ei
i

P Y y Y y Y y P Y y 


      
  

(35)

 
 
There are also other assumptions in DCM, such as the probability of correct response is 

non-decreasing for attribute mastery (or as more attributes are mastered).  That is:

 ˆ1 |iP X   � 
 is non-decreasing in ̂  for items i = 1, 2, …, I.  This assumption is 

known as monotonicity.  Latent trait models such as IRT also assume unidimensionality 

of latent ability (obviously models assuming such exclude MIRT and other extensions).  

DCMs are multidimensional in their latent parameters by the previous definition.   

When LI is violated this can result in biased item parameter estimates and 

therefore incorrect estimates of the probability of mastery and ultimately classification.  

Rosenbaum (1998) contends that the degree of violation may be more intense depending 

upon its source.  Thus, it is useful to consider various conceptual sources of within-class 

variation that could cause a violation in LI (cf. Conceptual sources of systematic within-

skill profile variation below). 

Mixture Models 

Mixture models are a general approach for modeling data that is assumed to stem 

from different groups (or clusters) but where group membership is unknown (Frick et al., 
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2012).  To illustrate, the following Figure 1.2 from McLachlan and Peel (2000) present 

density plots of two mixtures of Normal distributions for a few choice effect sizes: 

 
Figure 1. Plot of Mixture Density of Two Univariate Normal Components in Equal 

Proportions with Common Variance 
 

 
Note: 2σ 1  and means Aμ 0  and Bμ    in the cases: (a) 1  ; (b) 2  ; (c) 3  ; 

(d) 4  (Figure 1.2 from McLachlan & Peel (2002); reproduced with permission; 
Copyright 2000 with Wiley). 
 
 
Similar phenomena are investigated for the DCM setting in this study. 
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Characteristics of Mixture Distributions 

 An exemplar of two mixtures of Normal distributions can be considered for 

describing distributional characteristics.  Standard moments characterizing distributions 

such as mean, standard deviation, skewness, and kurtosis could possibly be used, but 

there are other characteristics that are relevant for mixtures in particular.  One method of 

visualizing overlapping distributions was described by Linacre (1996), who plotted the 

ratio of two group’s standard deviations (with larger standard deviation in numerator) on 

the y-axis and A Bμ μ σsmaller on the x-axis according to contours of the expected 

percentage of Normal distribution overlap.  Closely related is the well-known Cohen’s d 

measure, which is the ratio of the difference in locations of two mixtures to a pooled 

standard deviation, given by 

 

A B

pooled

μ μ

σ
d


 . (36)

 
 

Given this measure, Cohen (1977) defined U3 as a measure of non-overlap, where 

the percentage of the population distribution for A for which the upper half of the cases 

of the population B distribution exceeds.  Cohen’s d can be converted to Cohen’s U3 by: 

 3U d  , where   is the cumulative distribution function of the standard Normal 

distribution.  Cohen’s d can also be converted to an “overlapping” coefficient (OVL) 

using the following formula (Reiser & Faraggi, 1999) 
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1
2

2
OVL d

         
, (37)

 
 
Again where   is the cumulative distribution function of the standard Normal 

distribution.  There is one additional metric of overlap amount considered here: the 

Bhattacharyya coefficient (BC; Djouadi, Snorrason, & Garber, 1990), which is defined as 

 

   A B A B
2

μ μ μ μ
exp

8σ

T

BC
   

       
. (38)

 
 

The following table describes various combinations of Cohen’s d and measures of 

overlap when Aμ 0  and the pooledσ  is held consistent at 0.5 across scenarios: 

 
Table 5. Relationship between Cohen’s d, U3, OVL, and BC Holding pooledσ Constant  

 

Aμ  Bμ  pooledσ Cohen’s d Cohen’s U3 OVL BC
0 0 0.5 0 50% 100% 1.000
0 0.1 0.5 0.2 57.93% 92.03% 0.995
0 0.25 0.5 0.5 69.15% 80.26% 0.969
0 0.4 0.5 0.8 78.81% 68.92% 0.923
0 0.5 0.5 1 84.13% 61.71% 0.883
0 1 0.5 2 97.72% 31.73% 0.607
0 1.5 0.5 3 99.87% 13.36% 0.324
0 2.5 0.5 5 100% 1.24% 0.044
0 4.1 0.5 8.2 100% 0% <0.001

 
 
Here is a similar table when Aμ 0  and Bμ 1.5 ,  and varying pooledσ  across scenarios: 
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Table 6. Relationship between Cohen’s d, U3, OVL, and BC with varying pooledσ  

 

Aμ  Bμ  pooledσ Cohen’s d Cohen’s U3 OVL BC
0 1.5 →+∞ 0 50% 100% →1
0 1.5 7.5 0.2 57.93% 92.03% 0.995
0 1.5 3.0 0.5 69.15% 80.26% 0.969
0 1.5 1.875 0.8 78.81% 68.92% 0.923
0 1.5 1.5 1 84.13% 61.71% 0.883
0 1.5 0.75 2 97.72% 31.73% 0.607
0 1.5 0.5 3 99.87% 13.36% 0.324
0 1.5 0.3 5 100% 1.24% 0.044
0 1.5 0.183 8.2 100% 0% <0.001
 
 
Thus, as the Cohen’s d decreases to zero, the common variance approaches 

positive infinity.  Likewise, when the numerator of Cohen’s d is held constant but the 

value of d increases ad infinitum, then it is because the common variance has decreased.  

This study will investigate this relationship for DCMs when there is separation on latent 

traits between skill masters and nonmasters but within each there remains variance 

grafted on from continuous abilities due to various conceptual causes.  Another 

perspective is that there is a mixture IRT model with nonzero ability variance where 

mixtures are separated by mastery states of skills.   

Mixture IRT Models 

Mixture IRT models are IRT models allowing for unobserved latent 

subpopulations using mixtures (Rost, 1990; Willse, 2011).  This is compelling when the 

IRT model does not fit overall but is well-fitting within each mixture (Willse, 2011).  

One application of mixture IRT models has been to investigate possible DIF effects for 

latent groups (e.g., Cohen & Bolt, 2005; DeMars & Lau, 2011).  If person ability 
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parameters are fixed to a constant, then mixture IRT reduces to a LCM (von Davier & 

Rost, 2006). 

Conceptual Sources of Systematic Within-skill Profile Variation 

Without variation within latent skill mastery class, an examinee would only be 

considered a skill master or nonmaster, and among nonmasters everyone is equally a 

nonmaster (beyond variation in error prone observed items).  Assumed equivalence of 

this nature could imply that a single treatment (educational remediation) for nonmastery 

at one “dose” level is sufficient.  This conclusion of uniform remediation would be 

challenging to defend, as many bridges of inferences would have to be supported for the 

validity of this claim.  Thus, some non-systematic, stochastic within-class variation is 

presumed in the diagnostic measurement process (e.g., random variation from slipping or 

guessing). 

In DCM, latent classes are the profiles of skill mastery; not just mastery of each 

skill.  Therefore, an examinee is classified as having a particular profile (or not).  As the 

number of skills grows large, perhaps it is plausible to conjecture that everyone in the 

particular skill profile pattern of mastery/non-mastery is on reasonably equal ability 

potentially.  Does the reasonableness of this claim grow as the number of skills grows so 

large that skill profiles are highly specific and homogenous?  Potentially, for example, 

<0,1,0,1> and <0,1,0,1,0,0,1,0,1,1,0,1> are two vectors of skills of length 4 and 12, 

respectively.  Perhaps it could be argued that placing examinees in the more “specialized” 

profile of 12 skills could suggest these examinees are more homogeneous with respect to 

these attributes because if there is enough variation in mastery to differentiate them they 
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would have been placed in another profile.  With only four skills, the classification could 

perhaps be considered so coarse (or alternatively the definitional grain-size of the 

attributes) that there is more of an opportunity for within-profile variation than in a 

scenario with more skills.  These considerations lead to a question: Why would there be 

variation within class (i.e., within skill mastery profile)? 

Random/Stochastic Variation 

There could be non-systematic, random variation from slipping or guessing as 

previously defined above, from the stochastic element of responding to the item.  This 

source of variation has been traditionally modeled within the core DCMs previously 

discussed already. 

Systematic Variation from Construct Irrelevant Variance 

 There could also be variation due to some source of construct irrelevancy 

(Henning, 1989; Ferrier et al., 2011).  These potential sources include: 

 Poor items 

 Differential item functioning 

 Item order 

 Test-wiseness 

 Test format 

 Item format 

 Speededness  

 Test-related fatigue 

 Stakes of the testing 
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 Examinee motivation 

 Test anxiety 

 Test exposure 

 Test preparation 

 Testing conditions (e.g., interruptions) 

Systematic Variation from Construct Underrepresentation 

There could also be variation due to some source of construct underrepresentation 

from:  

 Multidimensionality is higher than specified 

 Issues with definitional grain-size (Rupp et al., 2010) 

 Testlets/sets of items with common content/item bundles/item clusters 

Thus, systematic sources of within skill mastery profile variation could fall within 

two broad categories: variation irrelevant to the skills attempting to be measured and 

underrepresentation of skill profiles (or individual skills themselves).  Some researchers 

(e.g., Rosenbaum, 1988) have separately developed methodology according to which of 

these two sources is problematic.  Thus, it is important to distinguish the conceptual 

sources of such systematic variation. 

Mis-specifying the number of attributes in DCM could be considered a 

misspecification of the Q-matrix.  It is well studied that inaccurate Q-matrices degrade 

classification performance (e.g., Rupp & Templin, 2008b; de la Torre, 2008; Chiu, 2013).  

Rupp et al. (2010) discuss issues that arise when the definitional grain-size of attributes is 

less than adequate.   
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However, when additional multidimensionality due to the test design arises 

because of dependencies between groups of items share common content, stimulus, or 

reading passages even when the number of attributes, their definitional grain-size, and 

chosen DCM are appropriate, then this is just a test design complexity that should be 

taken into account.  Such adjustments could be done analytically to remove them as a 

source of invalidity towards uses and interpretations of DCM.   

There have been at least two extended DCMs proposed to handle such data.  Choi 

(2010) proposed a diagnostic classification mixture Rasch model to detect examinee 

heterogeneity, such that LI is only assumed after accounting for classes and 

heterogeneity.  Templin (2009) and Henson et al. (2015) propose a categorical bifactor 

model where general content knowledge is specified as continuous latent ability and 

specific content area knowledge is specified as categorical latent skill mastery/non-

mastery with DCM-like terms.  This categorical bifactor model could allow for nuisance 

variation to be accounted for by the general continuous trait.  Templin (2009) remarks 

that he had yet to see an application of the categorical bifactor model to data where fit 

was not the best relative to other implemented DCMs.  Therefore, the generalized version 

of the categorical bifactor model discussed in Henson et al. (2015) was selected as the 

current study’s generating model to investigate violation of LI induced from underlying 

mixture MIRT variation.  Henson et al.’s (2015) generalized model is consistent with an 

assumption of a DCM with systematic variation based on conceptual causes of local 

dependencies.   
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Study Generating Model: The MCCIRM 

To further motivate the generating model used in this study, let the di difficulty 

parameter from the pMIRT model in Eq. (6) have the following composition 

 

 T
0λ h , λi i i e id q  

 
, (39)

 
 
Where again: 
 
 
 

 
1

T

1 1

λ h , λ λ ...
A A A

i i e ia ea ia iab ea ia eb ib
a a b a

q q q q   


  

   
 

(40)

 
 
This gives the generating model considered in this study, referred to as the 

multidimensional continuous-categorical item response model (denoted MCCIRM).  The 

MCCIRM is an extended version of the model presented in Henson et al. (2015), 

described by the following 

 

      T T
0logit 1 | θ , γ f ,θ λ h , λei e e i i e i i e iP X c q    

       
(41) 

 
 
Where: 
 
 
 

 
1

T

1 1

γ f ,θ γ θ γ θ θ ...
T T T

i i e it et it itu et it eu iu
t t u t

c c c c


  

   
  

 
(42)
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And 
 
 

 
1

T

1 1

λ h , λ λ ...
A A A

i i e ia ea ia iab ea ia eb ib
a a b a

q q q q   


  

   
 

 (43) 

 
 
Where model terms are defined by: 

eiX  is the scored item response for the e-th examinee on the i-th item, and 1eiX   for a 

correct response and 0eiX   for an incorrect response. 

1,2,...,e E  for the E examinees 

1,2,...,i I  for the I items 

θe
 is a vector of length T of continuous latent abilities for the e-th examinee 

e
 is a vector of length A of categorical latent attributes for the e-th examinee 

 Tγ f ,θi i ec
  

is the kernel for the pMIRT-like aspects of the MCCIRM and is defined by the 

above so that: 

θet is the t-th continuous latent ability for the e-th examinee  

1,2,...,t T  for the T continuous latent abilities 

γit  is the weight (logit increment) for the i-th item on the t-th continuous latent ability 

itc is an indicator variable for whether the i-th item requires the t-th continuous latent 

ability, so that 1itc   if the i-th item requires the t-th ability and 0itc   otherwise. 

γitu  is the weight (logit increment) for the pairwise interaction of the t-th continuous 

latent abilityθet and the u-th continuous latent ability θeu (u > t) for the i-th item 
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“+…” represents higher-order interaction terms above pairwise (up to the T-th way 

interaction).  These are not studied further in this report (cf. Assumptions about scope of 

Generating Model below). 

 Tλ h ,i i eq 
 

 is the kernel for the LCDM-like aspects of the MCCIRM, where: 

0λ i is the logit of the probability of correct response for the i-th item when no attributes 

have been mastered (intercept term) 

ea  is the categorical latent attribute for the e-th examinee for having mastered the a-th 

attribute, so that 1ea   if the e-th examinee has mastered the attribute a and 0ea 

otherwise, where 1,2,...,a A  for the A attributes 

λ ia  is the weight (logit increment) for item i on the a-th categorical latent attribute ea  

iaq  is an indicator variable for whether the i-th item requires the a-th categorical latent 

attribute, so that 1iaq   if the i-th item requires the a-th attribute and 0iaq   otherwise. 

λ iab  is the weight (logit increment) for the pairwise interaction of the a-th categorical 

latent attribute ea  and the b-th categorical latent attribute eb  (b > a) for the i-th item 

“+…” represents higher-order interaction terms above pairwise (up to the A-th way 

interaction).  Interactions above three-way are not studied further in this report (cf. 

Assumptions about scope of Generating Model below).  Kunina-Habenicht, Rupp, and 

Wilhelm (2012) reported that excluding higher-order interactions in estimation did not 

have practical impact on classification. 
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It should be noted that this MCCIRM should not be defined as a DCM according 

to Rupp and Templin (2008), who exclude latent trait models with any continuous latent 

variables as DCMs.  Further, it is prudent to consider next some matrices of interest to 

further define notation: ,  ,  ,  X C Q A
  

.  First, X


is the E I matrix of scored item responses 

given by 

 

11 12 1

21

1

I

E EI

X X X

X
X

X X

 
 
 
 
 
 



 

   

 

, (44) 

 
 
Where each eiX is defined above.  Next,C


 is the I T  design matrix of which items 

measure which continuous latent abilities given by 

 

11 12 1

21

1

T

I IT

c c c

c
C

c c

 
 
 
 
 
 



 

  

 

, 
(45) 

 
 
Where each itc  is defined above.  Next, Q


 is the I A  design matrix of which items 

measure which categorical latent attributes (i.e., the Q-matrix) described as 
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11 12 1

21

1

A

I IA

q q q

q
Q

q q

 
 
 
 
 
 



 

  

 

, 
(46) 

 
 
Where each iaq  is defined above.  Note that when simple structure is assumed for i-th 

item, that 
1

1
A

iaa
q


  and for a complexity of two that 

1
2

A

iaa
q


  (i.e., the row sums 

of the Q-matrix are one and two, respectively).  Finally, A


is the E A  attribute matrix 

detailing which examinees possess which categorical latent attributes based on each ea

as defined above given as 

 

11 12 1

21

1

A

E EA

A

  


 

 
 
 
 
 
 



 

   

 

. 
(47) 

 
 

Assumptions about Scope of Generating Model 

Further assumptions made about the MCCIRM in order to investigate the study 

research questions are as follows: 

All ig  and γitu  are fixed to zero in the generalized pMIRT aspects of the MCCIRM.  

Thus, the pMIRT-part of the MCCIRM reduces to a C-MIRT-like contribution. 

It is assumed T = A and all t correspond to the same value of a for all a. 
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Assuming T = A, it is further assumed that C Q
 

.  That is, that the design matrix of 

continuous latent abilities to items is the same as the design matrix of categorical latent 

attributes to items.  This provides one companion ability for each attribute. 

An average complexity of loadings from item to attribute of two is assumed.  Simple 

structure with items loading on only one attribute is also studied. 

A total of A = 3 attributes are considered in this study. 

A single approach to modeling the structural component of each DCM will be used: the 

saturated (unstructured) structural modeling approach, which estimates the 23 – 1 = 7 

parameters for the 8 mixing proportions directly. 

EAP estimation of attribute profile probabilities and attribute-wise marginal probabilities 

will be used, following estimation of item parameters in CDM in R.   

Given these assumptions, then the   logit 1|θ ,ei e eP X 
 

of the particular 

MCCIRM examined in this study is given by 

 
1

123 1 1 2 2 3 3 0
1 1 1

γ θ λ λ λ λ
A A A A

ia ea ia ia ea ia iab ea ia eb ib i e i e i e i i
a a a b a

c q q q q q q     


   

      (48)

 
 

From the above when A = 3, we have at most  1 2 1 7A A A       weight 

terms  λ .  These terms in addition to 0λ i  serve as a single difficulty parameter for a 

CMIRT model as one perspective.  Above and beyond the 0λ i  term, positive λ ia , λ iab , or 

123λi serves to increase the probability of correct item response (holding all else 
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consistent).  Therefore, if all λ ia , λ iab , and 123λi terms are zero (or their sum), then the 

above model collapses to a 2PL CMIRT model based on Eq. (2) (i.e., where 0ig  ).   

Continuous Ability Degeneracy from Different Perspectives 

Given the particular MCCIRM established for this study in Eq. (48), this could be 

viewed as a LCDM with nonzero continuous ability variance present based on the C-

MIRT aspects that have been added.  That is, if all θ 0ea   in Eq. (48), then the 

MCCIRM collapses to the LCDM.  Likewise, if all  θ 0eaVar  , then again the 

MCCIRM reduces to the LCDM.  Thus, we could conceive this MCCIRM as a LCDM 

with underlying mixture MIRT when  θ 0eaVar  .  So, if the dichotomous assumed 

nature of any attribute is interpreted as skill mastery or nonmastery, then Figure 2 

conveys the “offset” in location of ability distributions of two Normal mixtures when the 

sum of  the applicable λ ia , λ iab , and 123λi terms in Eq. (48) is > 0 (denoted by λ ), which 

would be true for masters of 1+ skills: 
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Figure 2. Ability Offset According to Attribute Mastery 
 

 
 
 

Here, mixtures of the continuous ability are by choice conceptualized to have a 

mean of zero for complete skill nonmasters to set the ability metric.  Then, the mean of 

the mixture for complete skill masters would by offset by the sum of the LCDM-like 

parameters, λ , in the MCCIRM in the logit scale.  Thus, this can be considered a 

mixture IRT model (e.g., for a given continuous ability ), where the two mixture 

distributions for skill nonmasters and masters have the same variance, 2
θσ , but different 

location parameters of θμ 0  and θμ λ , respectively.   

From the above the MCCIRM can then be considered as a DCM with LI violation 

as another perspective.  In the case that ability variances shrinks then the MCCIRM 

approaches the standard LCDM.  So, the extent to which non-negligible variance of 

abilities is present could possibly quantify the magnitude of the violation of LI.   
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Multiple Abilities: The Simple Structure Case 

In terms of the MCCIRM equation given in Eq. (48), simple structure is defined 

as the joint condition for the i-th item where 1iaq   when the i-th item requires the a-th 

attribute and all other 0iaq   for a a  and likewise for iac .  Given this, when there are 

multiple abilities with nonzero variance but items have simple structure, again the 

CMIRT portion of the assumed MCCIRM model given in Eq. (48) can be conceptualized 

as the specification of mixtures of two ability distributions per ability dimension, given 

by 

 

     
e e

2 2
M θ M θθ ~ 1 π 0,  σ π λ ,  σ

a aea aNormal Normal     , (49)

 
 
Where θea  is the a-th ability for the e-th examinee and is Normally distributed with a 

mean of zero and variance of 
e

2
θσ a

 if the examinee is a non-master of the a-th skill, and is 

Normally distributed with a mean of λa and variance of 
e

2
θσ a

if the examinee is a skill 

master of the a-th skill.  As the λa  increases above zero, the overlap between these 

ability distributions becomes less for a given level of ability variance 
e

2
θσ a

and therefore 

diagnostic classification would conceptually be more recoverable (i.e., classification is 

more accurate) because skill mastery raises the probability of correct response to a 

greater degree.  As the λa approaches zero, the overlap between these ability 

distributions becomes greater for a given level of ability variance 
e

2
θσ a

and therefore 
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diagnostic classification would conceptually be less accurate.  Likewise, for a given λa

value as the common mixture distribution ability variance 
e

2
θσ a

increases then so does the 

overlap between the ability mixtures.  Similarly, for a given λa value as the common 

mixture distribution ability variance 
e

2
θσ a

decreases to zero then the overlap between the 

ability mixtures decreases as well.  This suggests the following proportionality, 

 

e

c 2
θ

1

σ
a

  , (50)

 
 
So that the proportion with correct diagnostic classification, c , is hypothesized to be 

proportional to the common ability variance,
e

2
θσ a

.  However, even with zero common 

variance, classification is not perfect due to random/stochastic variation within DCM 

(i.e., due to slipping or guessing).  Another measure that can be considered is the ratio of 

the maximum separation in location of any given pair of two ability mixture distributions 

between complete skill masters and nonmasters to their common standard deviation of 

ability, given by 

 

e

2
θ

λ 0

σ
a

a   
. (51)
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This “effect size” measure, , is useful because in relation to the above, as the 

denominator goes to zero (for consistent nonzero λa ) then the MCCIRM generating 

model collapses to a DCM because the CMIRT part reduces to a constant and can be 

aggregated into the LCDM-part intercept.  As the numerator goes to zero (for consistent 

nonzero
e

2
θσ a

) then the MCCIRM generating model collapses to a (nonmixture) CMIRT 

model.  Figure 3 relates these scenarios back to a mixture CMIRT model under the case 

of simple structure: 

 
Figure 3. Mixture MIRT Model with Simple Loading Structure and Mastery Location 

Offsets 
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From Figure 3 one can see that as the variance degenerates (i.e., 
e

2
θσ 0

a
 ), the 

two bell curves contract until they collapse to infinitesimally narrow bars corresponding 

to master and nonmaster classes.  When variance does not degenerate and as λ 0a  , 

the location offset decreases until the master and nonmaster classes perfectly overlap.   

Some additional items are of note.  First, the ability mixtures given in Eq. (49) have 

Mπ 0.50 for all a attributes by study design assumption.  Other mixing proportions 

could possibly be investigated in future research.  Another study design choice could also 

allow for unequal 2
θσ a as specified above in Eq. (51).  However, in this study it is further 

assumed that 

 

1 2

2 2 2 2
θ θ θ θσ σ ... σ σ .e e eA e
     

(52)

 
 

So that for each skill/ability pair that there is a common ability variance denoted as 2
θσ .e

(i.e., the homogeneous variance 2
θσ a for all values of a).  Finally, another study design 

specific choice is in assuming λ λi
i

I
   
 

  for defining effect size.  This assumption 

is made so that uniform offset effects could be studied.  Future studies could investigate 

heterogeneous separation between skill masters and nonmasters for different attributes 

and/or items.  Given these, Figure 3 could be also visualized within the MCCIRM 

framework to be: 
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Figure 4. Conceptual MCCIRM under Simple Structure 
 

 
 
 

To summarize, the main idea is that when the common ability variance 
2
θσ .e  goes to zero, 

then the MCCIRM reduces to a DCM as described above.  Likewise, when the logit 

increment of correct response (sum of the LCDM-like parameters) for skill masters is 

zero, there is no mixture location offset in ability distributions and they coincide exactly 

(for nonzero ability variance).   

Multiple Abilities: The Complex Structure Case 

In the simple structure case above only one ability is considered, θea .  For the 

MCCIRM given in Eq. (48), complex structure is defined as the joint condition for the i-

th item where 1iaq   when the i-th item requires the a-th attribute and at least one other 
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1iaq   for a a  and likewise for iac .  When multiple abilities are required for the i-th 

item for the e-th examinee, one way to conceptualize this within the MCCIRM of Eq. 

(48) is to consider it as a weighted composite, θe
 , of the A multiple abilities, and in 

particular as discussed above, one ability per attribute, 

 

1

θ γ θ
A

e ia ea ia
a

c


 
 

(53)

 
 

This weighted ability composite aspect of the MCCIRM is akin to a “reference” 

composite (Reckase, 2009) estimated in a unidimensional IRT model when there are 

actually multiple underlying abilities.  In the complex case, when various θea are 

correlated, then the induced effect size is smaller than that in the simple case because the 

composite variance is larger than just the sum of the separate variances (See Appendix A).  

Variance of continuous trait composite in the MCCIRM for complex structure for more 

details regarding ability variance under complex structure.   

Again, as the effect size shrinks then the mixtures overlap to a greater degree, 

making classification accuracy hypothetically more difficult to achieve.  Thus, under 

these conditions complex structure is hypothesized to have an even more detrimental 

effect on diagnostic classification relative to simple structure because of this nature of the 

composite variance and the covariance introduced by the individual positively correlated 

abilities.  The subsequent methods described in the remainder of the study address how 
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such effect sizes were investigated in an appropriate way to examine what degree of 

variance degeneracy leads to impact on classification accuracy.   

Compensatory Processes for Complex Structure 

Additional comments should be given about the case when loading structure is 

complex and the response process is compensatory.  To illustrate this, consider a 

hypothetical example for a particular item with complex loading structure and requires 

two attributes (e.g., addition and multiplication).  Further assume that the response 

process is compensatory such that if an examinee can respond correctly about one 

attribute that this can somewhat “make up” for a lack of having the other skill.  Recall 

that the formula for the LCDM representation of the CRUM was given in Eq. (21), and 

for this particular example well represents the logit of correct response to the fifth item 

on a diagnostic assessment, given by 

 

  5 5 5,0 51 1 51 52 2 52 5,0logit 1 | ,λ ,λ λ λ λe e e eP X q q     
 

(54) 

 
 
It is apparent from Eq. (54) that different log-odds for nonmasters of both attributes, 

masters of only one attribute, and masters of both attributes, are implied and are given in 

the table: 
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Table 7. LCDM CRUM Weights with Two Attributes, Complex Structure for Example 
Item 

 
Scenario Log-odds of correct response 
Nonmasters of both attributes 

5,0λ  

 

Masters of only one of 1e  or 2e  
51 5,0λ λ  if only mastered 1e  

or 

52 5,0λ λ if only mastered 2e  

 

Masters of both 1e  and 2e  51 52 5,0λ λ λ   

 
 

Thus, there is more than just one change in log-odds of correct response when 

there is item-to-skill loading complexity for compensatory processes.  If combinations of 

mastery of the two skills as location offsets are again conceptualized in a mixture MIRT 

model, then the previous Figure 3 could be modified to be:  
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Figure 5. Mixture CMIRT Model with Two Abilities and Complex Structure for Item #5 
 

 
 
 
Although there are two underlying mixtures for item #1 due to its simple loading 

structure onto e1θ , there are three underlying mixtures for item #5 which loads on e1θ  and 

e2θ  here, where each mixture and their overlap are illustrated by: 
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Figure 6. Example of Compensatory Skill Mastery Offset for Complex Structure 
 

 
 
 
Thus, for item #5 three underlying mixtures are induced: (1) for nonmasters of skills 1 

and 2 with location equal to 0, (2) masters of only one skill with location equal to either 

51λ  if possessing skill 1 or 52λ  if possessing skill 2, and (3) masters of both skills with 

location equal to 51 52λ λ .   

Because of this, when defining the effect size as in Eq. (51), the maximal 

difference between complete nonmasters and total masters was used in data generation.  

Here in the example, this would correspond to  2

5 θ1
λ 0 σ .eaa

   , which is the 

difference in location between masters of both skills compared to nonmasters of both 

skills.  Defining the effect size in this way with the maximal difference will create 

consistency between effect sizes in noncompensatory and compensatory LCDMs under 

complex structure for minimal and maximal mastery groups.  An implication of this is 

that classification for masters of less than all skills for compensatory models under 
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complex structure could suffer more, because as can be seen above in the example, 

overlap with nonmasters would be worse than described by the maximal difference effect 

size definition.  This effect size convention is only for data generation, as classification 

for profiles of examinees who lack all or less than all skills is examined among the study 

findings as well as for attribute-wise marginal attainment from estimated DCMs.   

For a DCM such as the DINA model that is strictly noncompensatory, there are 

no “middle” mixtures due to increase in log-odds of correct response from having only 

mastered a single skill among multiple required skills.  Similarly, when there is simple 

loading structure an item will only load onto one skill, thereby only providing a single 

increase in the log-odds of response for mastery.  This last point regarding simple 

structure also impacts how total ability variance within the MCCIRM is controlled as 

discussed above versus other conceptual possibilities.  Thus, more consideration 

regarding these other conceptualizations are attended to first before going further.   

Introducing Systematic Within-Class Variation from Different Mechanisms 

Thus far it has been assumed that within-class variation is introduced through 

underlying mixture distributions with one skill per companion continuous ability.  From a 

DM perspective, this represents variation beyond random noise such as slipping or 

guessing, whereby each latent skill is by design assumed to be affected equally by 

introducing continuous ability variation into the modeling for diagnostic classification.   

However, there are other ways in which such continuous ability variance from 

underlying mixture MIRT-aspects can be introduced within the MCCIRM framework: (a) 

a categorical bifactor model with a single general continuous trait and (b) introducing one 
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continuous trait per DCM skill profile (von Davier, 2005) where there are unique changes 

in probability of correct response.  An illustration of the former approach using a 

Categorical Bi-factor model discussed in Henson et al. (2015) is given by: 

 
Figure 7. Categorical Bi-Factor Model 
 

 
 
 
For the latter approach introducing one continuous trait per DCM skill profile, this could 

be possibly visualized as the following: 
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Figure 8. Conceptual Model Illustrating Continuous Traits per DCM Skill Profile 
 

 
 
 

This conceptualization is more in line with von Davier’s GDM, which has been 

previously used for diagnostic classification where just the latent traits themselves are 

constrained to -1 and +1.  The way systematic variation would be introduced here would 

be through introducing one ability for nonmasters (located at -1) and additional abilities 

for every unique increase in response probability when skill profile changes.  So, rather 

than one ability per skill, the skill profile would act like a mediating step here in terms of 

allowing increasing ability variance to influence diagnostic classification. 
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Previous Measurement Models with Continuous and Categorical Traits 

 Thus, from the above there are other ways that could introduce within-class 

systematic variation.  The current study accomplishes this through a particular choice of 

the MCCIRM, which has both continuous and categorical latent traits.  However, there 

have been other measurement models with both kinds of traits proposed as well: (a) the 

Full Reparameterized Unified Model (Roussos et al., 2007a), (b) the General Diagnostic 

Model (von Davier, 2005), and (c) the diagnostic modeling framework from Rupp et al. 

(2010), for which the categorical bifactor model from Henson et al. (2014) follows.  Lee 

and Sawaki (2009), Jang (2009a), Li (2013) and Zhao (2013) all used the fusion model in 

their applied studies for diagnostic classification, while Kunina-Habenicht et al. (2009) 

and Lee and Sawaki (2009) both used the GDM in their applied studies for diagnostic 

classification.   

 As seen above in Figure 7, Henson et al.’s (2014) categorical bifactor model is a 

derivation from the general diagnostic modeling framework presented in Rupp et al. 

(2010): 
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Figure 9. The Four Steps of the Diagnostic Modeling Framework 
 

Figure 3.7 from Rupp et al., 2010; adapted with permission; Copyright 2010 with 
Guilford.   
 
 

For the categorical bifactor model, there is only one (general) continuous ability 

assumed to be present, and is uncorrelated with the other latent categorical attributes.  

Thus, there have been other educational measurement models besides the MCCIRM 

proposed that incorporate both latent continuous abilities and latent categorical attributes.  

However, no prior studies to date have examined the impact on skill mastery diagnosis if 

such a measurement model with this duality were truth when performing diagnostic 

classification using DCM, where conceptually representing a violation of the LI 

assumption in DCM. 
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In sum, when continuous traits are additionally active due to the aforementioned 

conceptual sources, then diagnostic classification can be impacted.  The remainder of the 

current study is devoted to describing methods and findings from this impact under a 

variety of conditions identified in the review of the literature within this chapter.   
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CHAPTER III 
 

METHODOLOGY 
 
 

Research Questions and Hypotheses 

The four study research questions and six hypotheses stated in the first chapter 

are: 

RQ1.  Does increasing variance of continuous abilities in mixtures of mastery/non-

mastery groups cause detectable violations of local independence when performing 

diagnostic classification? 

H1.  Increasing variance of continuous abilities generated from the MCCIRM is detected 

by increasingly large Yen’s Q3 statistics based on results from DCMs without continuous 

ability. 

RQ2.  Does increasing variance of continuous abilities degrade model fit when 

performing diagnostic classification? 

H2.  Increasing variance of continuous abilities within the MCCIRM substantially 

degrades item parameter recovery in LCDM estimates without continuous ability. 

H3.  Increasing variance of continuous abilities within the MCCIRM leads to 

overestimation of attribute-to-attribute correlations under the LCDM without continuous 

ability. 

RQ3.  Does increasing variance of continuous abilities lower accuracy of diagnostic 

classification? 
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H4.  Increasing variance of continuous abilities within the MCCIRM substantially 

degrades proportion of correct diagnostic classification based on estimated LCDMs 

without continuous ability. 

RQ4.  Are effects of increasing variance of continuous abilities on accuracy of diagnostic 

classification affected by complexity or compensation? 

H5.  Complex structure substantially degrades proportion of correct diagnostic 

classification based on the LCDM without continuous ability when variance of 

continuous abilities within the MCCIRM increases. 

H6.  Compensatory versus noncompensatory processes leads to substantially lower 

proportion of correct diagnostic classification based on the LCDM without continuous 

ability when variance of continuous abilities within the MCCIRM increases. 

Research Design 

A simulation study is conducted to investigate the claims of the study hypotheses.  

This design was chosen because these questions have never been previously investigated 

when truth was known and strict control of study conditions is desired.  The following 

Analysis plan details conditions and scope of the simulation study in order to conduct the 

investigation. 

Analysis Plan 

What DCMs are Studied 

 The saturated LCDM as well as the following three core DCMs are studied within 

the LCDM framework: the CRUM, DINO, and DINA models.  The LCDM specification 
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of these core DCMs and the saturated LCDM were detailed in the previous chapter on the 

Review of the Literature.   

Simulation Methods and Conditions 

 Table 8 details the study methods and conditions: 

 
Table 8. Simulation Methods and Conditions 
 
Condition Levels 
Diagnostic classification model CRUM, DINA, DINO, LCDM 
  
Number of attributes, abilities 3 
  
Average item-to-skill/ability complexity1 1, 2 
  
Number of examinees 10,000 
  
Number of items per skill 5, 10 
  
Correlation of attributes/abilities  0.70 
  
Effect size2,  0.8, 2, 3, True DCM 
  
Probability of complete non-mastery ~Uniform(0.05, 0.25) 
  
Probability of complete mastery ~Uniform(0.75, 0.95) 

  *Note. 1. Q-matrix entries were the same for attributes and abilities for each item; 
              2. Effect size was defined to be ratio of the average sum of LCDM weights 

above the intercept divided by the standard deviation of ability.   
 
 
Conditions included: (a) simulated probabilities of complete nonmastery 

according to Uniform(0.05, 0.25) and complete mastery according to Uniform(0.75, 

0.95), (b) DCMs studied included the CRUM, DINA, DINO, and saturated LCDM, (c) 

simple and complex structure (target average complexity = 2), (d) test lengths of 15 and 

30 items, and (e) effect size, , as defined above targeted to be  = 0.8 (large violation in 



81 
 

LI),  = 2 or 3 (some violation in LI), and True DCM (no violation in LI / zero ability 

variance).  All scenarios considered three attributes with three companion continuous 

abilities (up to three each according to generated Q-matrices).  Population associations 

among attributes were specified to be 0.70 and likewise among abilities (attributes and 

abilities were considered uncorrelated with each other).  All replications were performed 

with a sample size of 10,000 simulees and all conditions were based on 100 replications 

each for approximating sampling distributions. 

From Table 8 above, the choice to fix the number of attributes at three facilitates 

explication of results as this would result in eight skill profiles and is within the range of 

DCM application studies discussed in the previous chapter.  Studying both simple and 

complex structure gives the study breadth.  Although DCMs have most benefit under 

complex structure, they have been applied to assessments possessing items with simple 

structure only (e.g., Henson et al., 2015; Jurich & Bradshaw, 2014).  Bradshaw and 

Templin (2014) report an applied study using the LCDM where 19 of 27 items had 

simple structure and the rest had complexity of 2.  Thus, simulation conditions for 

complexity are within the realm of recent DCM application studies.   

The number of examinees was set to be high enough at 10,000 so that sample size 

effects would not be detrimental (e.g., Kunina-Habenicht, Rupp, & Wilhelm, 2012).  

Rupp et al. (2010) simulated data to demonstrate estimation using 10,000 examinees as 

well and remark that “To ensure that the parameter estimates would be estimated 

accurately, we generated data for 10,000 respondents.” For test length, two conditions 

were chosen where 15 total items will be considered (5 per skill) and 30 total items (10 
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per skill).  These two conditions are within the range of recent DCM applied studies 

summarized in Table 7, and are intended to reflect a shorter and longer assessment 

length.  For the correlations among attributes or among continuous abilities, these were 

fixed to be the same value where a magnitude of 0.70 was chosen.  Correlations among 

attributes of 0.70 were chosen by Madison and Bradshaw (2014) for their LCDM Q-

matrix design simulation study, and represents a non-trivial association between latent 

traits, but not so high that extreme redundancy is observed (i.e., traits remain distinct).  

Henson et al. (2015) found a tetrachoric correlation of 0.81 between two attributes after 

use of the categorical bi-factor model.  Jurich and Bradshaw (2014) found a range of 

attribute tetrachoric correlations between 0.56 and 0.94.  Zhao (2013) found attribute 

correlation ranges of 0.62 to 0.96, 0.02 to 0.95, and 0.47 to 0.90 for three different 

applications, respectively.  Thus, a correlation choice of 0.70 among attributes is within 

the realm of recent DCM application studies. 

The new set of conditions this study investigates are the related to the effect size 

defined in Eq. (67) from the CMIRT aspects of the MCCIRM generating model.  These 

effect size values were chosen according to the earlier Tables 1 and 2, which describe 

how the effect sizes correspond to various amounts of overlap (i.e., using the OVL 

percentage).  Here,     corresponds to a “true DCM” condition, since there is no 

overlap for the case.  This effect size serves as a benchmark to judge performance against 

all other scenarios.  The other chosen values then represent various decreasing effect 

sizes due to increasing total continuous ability variance under scenarios for the numerator 

in Eq. (67) on logit separation between maximal masters and minimal nonmasters 



83 
 

according to previous published studies.  The commonly chosen effect size of 0.8 is 

included among these (Cohen, 1988).  The values 2 and 3   are chosen in order to 

provide approximately 32% and 13% overlap among underlying continuous ability 

mixtures (using the OVL coefficient).   

It was expected for smaller effect sizes (e.g., 0.8  ) that non-convergence of 

DCM estimation could occur.  Non-convergence was defined as exceeding the maximum 

default number of iterations within the E-M algorithm (A. Robitzsch, personal 

communication, April 7, 2015), and was tallied and reported across repetitions by 

condition (but no further adjustments made such loosing default convergence criteria in 

order to aid convergence).   

A key idea is that logit separation values of the effect size numerator were chosen 

according to the current DCM application studies so that probability of complete 

nonmastery was between 0.05 to 0.25 and complete mastery was between 0.75 and 0.95.  

Controlling this range allowed the separation between the minimal and maximal mastery 

groups are similar between different models, even if they use different condensation 

kernels (e.g., DINA and DINO).   
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Table 9. Required  θeaVar  According to Differences in Probability of Complete 

Nonmastery versus Complete Mastery  
 
Nonmastery vs. 
Mastery 

True DCM 3   2   0.8   

    
0.05 versus 0.95 0 1.963 2.944 7.361 
     
0.20 versus 0.80 0 0.924 1.386 3.466 

 *Note. Values of continuous ability SD according to logit separation corresponding to 
difference in probability of complete nonmastery versus complete mastery.   

 
 

From the previous Table 8, the simulation study design has 1×1×1×1×2×1×4×1×1 

cells for simple structure case + 4×1×1×1×2×1×4×1×1 cells for complex structure 

(average complexity = 2) for a total of 40 cells.  There was 100 replications per cell for a 

total of 4,000 replications.   

Data Generation 

Q-Matrix Generation 

For simple structure, Q-matrices had 5 items for each attribute for test length of 

15 items and 10 items for each attribute for length of 30 items.  Items were put in a 

random order using a random order generator.  For the complex condition described 

below an average item complexity of two was targeted (observed was 1.83 for 15 items 

and 2.12 for 30 items across 100 replications each).  For complex Q-matrices, these were 

constructed based on random draws from a Binomial distribution with a probability of 

success proportional to item complexity divided by the total number of attributes.  All 

complex Q-matrices had two simple structure items per attribute for each test length 

(Madison & Bradshaw, 2014).  No attribute could be measured by all items and each 
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attribute had to be measured by at least two items.  It took 10,249 generated Q-matrices 

to obtain 100 with these characteristics for the 15 item test length condition and 4,664 

generated Q-matrices to obtain 100 for the 30 item test length condition.   

Examinee Attribute Profile and Ability Generation 

Attribute patterns were simulated in a manner consistent with Shu, Henson, & 

Willse (2013) and Willse, Henson, and Templin (2007).  Briefly, a multivariate normal 

distribution was simulated then dichotomized in simulating attributes.  This distribution 

was specified with a matrix defining the tetrachoric correlations among attributes, and 

simulated based on a population parameter of 0.70 indicating a strong association 

between attributes.  The marginal probability of mastery of each attribute was specified to 

be 0.50. 

Examinee ability was simulated from multivariate Normal distribution such that 

  θ θθ ~ μ 0,0,0 ,  MVN  
  

 where θ

 had the form based on Eqs. (A1.10) and (A1.11) 

in Appendix A (compound symmetric) with  θ ,θ 0.70ea eaCorr    and 2
θσ .e according 

to Table 9 above (dictated by the targeted effect size for a given condition).   

Item Parameter Generation 

The following study conditions were considered in order to introduce effect size.  

First, the probability of complete non-mastery was sampled from a Uniform distribution 

based on     1| 0,0,0 ~ 0.05,  0.25eiP X Uniform 


.  Therefore, the corresponding 
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intercept term 0λ  from a LCDM under three attributes would then be drawn from 

 0λ ~ 2.944, 1.386Uniform    since        0 01| 0,0,0 exp λ 1 exp λeiP X    


. 

Likewise, the probability of complete mastery was sampled from another Uniform 

distribution based on     1| 1,1,1 ~ 0.75,  0.95eiP X Uniform 


.  The corresponding 

sum of all LCDM weights including 0λ would then be based on a  1.099,  2.944Uniform .  

Subsequently the sum of all LCDM weights above 0λ , denoted as λi
i
 , was computed 

as the difference between the total sum of all weights and the draw of 0λ .  For the four 

DCMs considered (CRUM, DINA, DINO, LCDM), the λi
i
  were allocated to 

individual weights in play according to the related Q-matrix entries for a given item in 

each replication.  Specifically, λi
i
 was evenly distributed among individual weights for 

the CRUM by assigning values of λi
i
 divided by the sum of Q-matrix row entries for a 

particular item (i.e., the one weight gets all of λi
i
 in simple structure and each weight 

gets half of λi
i
  if complexity = 2).  For the DINA model, the weight for the highest 

order term received the full λi
i
 value.  Weights in the DINO model were allocated 

according to that described in Henson et al. (2009) (e.g., for complexity = 3, main effect 
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weights received λi
i
 , two-way interaction effects received λi

i

 , and the three-way 

interaction received λi
i
 ).   

For the LCDM, weights were all positive and allocated as follows.  For simple 

structure, the single weight received the full λi
i
 .  For item complexity = 3, main 

effects and the three-way interaction received a value according to  1λ i
i

k ç
 
 
 

 , 

where ç  is complexity (in this case 3ç  ) and  ~ 0.50,  0.66k Uniform .  The two-way 

interactions received a value of 

 
 

                                                    

 

   21

1 λ i
i

k

ç ç 

 
. 

(55)

 
 

This way of allocating the λi
i
 led to main effect weights of the same magnitude as the 

three-way interaction whereby both are slightly-to-somewhat larger than weights for the 

two-way interactions.   

Item Response Generation 

Item responses were generated as follows.  First, item parameters were simulated 

as described above.  Then, if the probability of correct response based on Eq. (9) given 

item parameter values were less than a random draw from a Uniform(0, 1) distribution, 
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the item response was considered incorrect.  Otherwise, the item response was scored as 

correct.  This approach was also consistent with Willse et al. (2007). 

Estimation 

 DCMs were estimated in the R package CDM (Robitzsch et al., 2013).  Marginal 

maximum likelihood (MML) estimation using the Expectation-Maximization (E-M) 

algorithm based on de la Torre (2009) and de la Torre (2011) was performed.  Numbers 

of iterations for studying convergence were saved and reported on below (1,000 iterations 

indicates non-convergence).   

Characterization of Mixture Distributional Features 

 Mixture characteristics will be described as discussed in the section 

Characteristics of Mixture Distributions in the previous chapter, Review of the Literature. 

Empirical Investigation of Local Independence 

Differences between observed item responses and model-based expected item  

responses were used to compute model residuals, given by 

 
 

                                              i ei eid X E  , (56)

 
 
Where Xei is the e-th examinee’s scored response to the i-th item (1=correct, 0=incorrect) 

and Eei is the expected response.  Expected item responses will be computed in a similar 

manner to Henson et al. (2015), given as 
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                      
2

0
1

ˆ ˆˆ 1 | ,λ ,λ
A

ei ep ei ep i i
p

E P X 


  
  . 

(57)

 
 

Here,  0
ˆ ˆˆ 1 | ,λ ,λei ep i iP X 

 
is the estimated probability of correct response using 

the estimated model parameters for one given skill profile, ep


, among 1,...,2Ap   

possible skill profiles.  The ep  term is the probability that the e-th examinee is classified 

into the p-th skill mastery profile.  The unique number of simulated response strings will 

determine (match) the patterns of expected responses.   

The Q3 statistic (Yen, 1984) was estimated to suggest pairs of test items that 

showing local dependence (Embretson & Reise, 2000).  The Q3 statistic represents the 

correlation between items after partialling out the latent trait(s), calculated by correlating 

residual scores among item pairs i  and i  given by (Yen, 1993) 

 
 

                                                3 ,ii i iQ r d d  . (58)

   
 
Parameter Recovery 

Parameter recover regarding the LCDM-like aspects of the MCCIRM are 

summarized using bias as defined in Maris (1999) and mean absolute deviation (MAD) 

as defined in Junker (2007) as: 

 
 

                                          
 

1

1 ˆ
R

r

r

BIAS
R 

     
 
  (59)
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And 
 
 
 

                                          
 

1

1 ˆ
R

r

r

MAD
R 

    , (60)

 
 

Where   denotes the true item parameter value and  ˆ r  denotes the estimated item 

parameter value for the r-th replication, 1,...,r R .  In this study, R = 100 replications.  

Mean estimated values along with true parameter values are reported in accompanying 

these measures.  Scatterplots of estimated versus true item parameter values are 

examined. 

Quantifying Classification Performance 

Two metrics of classification performance will be reported: (a) proportion of 

examinee classification into the correct skill mastery profile (pattern-wise CCR) and (b) 

proportion of examinee classification into the correct skill mastery state for each skill 

(attribute-wise CCR).  The former will be estimated by dividing the number of examinees 

whose attribute patterns are correctly identified by the total number of examinees (Feng 

et al., 2014).  These two correct classification rates (CCRs) will be reported marginally 

over conditions by effect size and model and then also condition-specific to the third 

decimal place.  EAP estimates will be used with a posterior predicted probability (p) of 

>0.50 indicating skill mastery.  Feng et al. (2014) remark that MAP estimates provide 

better classification on all A attributes while EAP estimates result in examinees classified 

correctly on more attributes.  Other researchers (e.g., Templin & Henson, 2006; Roussos 
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et al., 2007a; Jang, 2009a) have also previously considered various “zone of indifference” 

regions when setting mastery probability cut-points where p < 0.40 indicates nonmastery, 

p > 0.60 indicates skill mastery, and 0.40 ≤ p ≤ 0.60 where mastery classification is 

indeterminate.  Ackerman et al. (2010) alternatively defined the indeterminate zone of 

indifference region as 0.45 < p < 0.55.  No indifference region is adopted in the current 

study. 

Presentation of Results 

Tables, scatterplots, and trellis boxplots of study measures paneled by conditions 

and models are used to present the study findings.  All graphics subscribe to principles of 

Cleveland (1994) and Tufte (2001).   

How Methodology Addresses Research Questions 

Table 10 described how research questions and hypotheses were addressed: 

 
Table 10. Methods for Addressing Study Hypotheses 
 
Hypothesis Methods 
H1. Increasing variance of continuous abilities 
generated from the MCCIRM is detected by 
increasingly large Yen’s Q3 statistics using 
results from the LCDM estimation without 
continuous ability. 
 

Yen’s Q3 statistics are summarized 
by model, effect size, and 
simulation conditions in tables and 
using boxplots. 

H2. Increasing variance of continuous abilities 
within the MCCIRM substantially degrades item 
parameter recovery in LCDM estimation without 
continuous ability (of the LCDM-part item 
parameters of the MCCIRM). 
 

Bias and MAD are summarized by 
model, effect size, and simulation 
conditions in tables, scatterplots, 
and using boxplots. 
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Hypothesis Methods 
H3. Increasing variance of continuous abilities 
within the MCCIRM leads to overestimation of 
attribute-to-attribute correlations in the LCDM 
without continuous ability. 
 

Attribute-to-attribute correlation 
estimates are summarized by 
model, effect size, and simulation 
conditions in tables and using 
boxplots. 

H4. Increasing variance of continuous abilities 
within the MCCIRM substantially degrades 
proportion of correct diagnostic classification 
based on the LCDM without continuous ability. 
 

Correct classification rate (CCR) 
attribute-wise and profile-wise are 
summarized by model, effect size, 
and simulation conditions in tables 
and using boxplots. 

H5. Complex versus simple structure 
substantially degrades proportion of correct 
diagnostic classification based on the LCDM 
without continuous ability when variance of 
continuous abilities within the MCCIRM 
increases. 
 

Methods used in H4 are employed 
to compare Complex versus Simple 
structure conditions. 

H6. Compensatory versus noncompensatory 
processes leads to substantially lower proportion 
of correct diagnostic classification based on the 
LCDM without continuous ability when 
variance of continuous abilities within the 
MCCIRM increases. 
 

Methods used in H4 are employed 
to compare Compensatory versus 
Noncompensatory conditions. 

 
 

Possible Limitations of the Approach 

 Limitations of the methods include potential inappropriateness when the 

assumptions made that are discussed in these first three chapters are violated.  Such 

violations would cast doubt on validity of conclusions, but many are made by study 

design choice so that those are controlled for.  However, other limitations of the approach 

would be if such assumptions are unreasonable or do not relate to real-world practice.  

Because the selected study methodology and simulation conditions were grounded in a 

thorough and current literature review, this strengthens the case for their appropriateness 
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and of the general study approach in addressing research questions and hypotheses.  

Where alternative choices, conditions, and assumptions could have been made or 

investigated in future research this has been explicitly noted previously.   
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CHAPTER IV 
 

RESULTS 
 

 
 This chapter presents results of the study for convergence, local dependence, 

correct classification, item parameter recovery, and attribute-to-attribute correlations.   

Convergence 

 Figure 10 gives the number of iterations needed by condition.  No replications 

resulted in the default maximum of 1,000 iterations, seemingly implying convergence 

from this standpoint.  The number of iterations was somewhat less for the simple 

structure condition relative to replications with average complexity of two, more so for 

the 10 items per attribute condition.  Within complex structure for the 10 items per 

attribute condition (test length = 30 items), increasing violations of local independence 

through decreasing effect sizes were associated with increased numbers of iterations, 

especially for the CRUM and LCDM models.  The DINA and DINO models featured this 

much less so, whereby a jump in iterations was observed for any effect size but 

differences within the  = 3, 2, and 0.8 conditions for these models were more modest.  

Numbers of iterations for these models in either test length were roughly similar to that 

within simple structure. 

  



Figure 10. Number of Iterations by Simulation Condition 
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Figure 11. Mean of Yen’s Q3 Statistic 
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Figure 11 conveys detection of local dependencies by decreasing effect sizes.  

Also, Figure 12 reports the mean of the absolute value of Yen’s Q3 statistic.  Here for the 

30 item condition, decreasing effect size corresponding to greater local independence 

violation was associated with increasingly larger Yen’s Q3 values.  Interestingly, Q3 was 

much higher in magnitude (more than double for some conditions) for the DINA and 

DINO models relative to the LCDM and CRUM under complex structure.  Results for 

simple structure were somewhere in between these, but still exhibiting the same pattern 

of increasing Q3 for decreasing effect size.   

Also observed in Figure 12 was a non-monotonically increasing pattern 

specifically under the 15 items test length case for just the CRUM and LCDM (but not in 

their 30 item test length results).  This pattern was an artifact of taking the absolute value 

of the Q3 statistics before averaging, as these patterns for this test length and models 

exhibited the expected increasing pattern in Figure 11 that did not first take absolute 

values of Q3.  For these models in the 15 item test length case this phenomenon was due 

to many values being slightly negative and close to zero.  So when the absolute value is 

first taken (as in Figure 12), the patterns appear to be misleading with respect to true 

DCM versus increasing effect sizes because the narrow distribution of negative Q3 values 

for true DCM here become positive.  Table 11 reports the average of mean Q3 values 

(and absolute value) by model, effect size, and other conditions: 
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Figure 12. Mean of Absolute Value of Yen’s Q3 Statistic 
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Table 11. Mean Values of Yen’s Q3 Statistic by Study Conditions 
 
 No. items = 15 
 True DCM   = 3   = 2   = 0.8 
Model Q3 |Q3|  Q3 |Q3|  Q3 |Q3|  Q3 |Q3| 
Simple -0.022 0.026  -0.006 0.032  -0.000 0.032  0.017 0.025 
CRUM -0.039 0.042  -0.032 0.063  -0.029 0.063  -0.009 0.049 
DINA -0.014 0.018  0.036 0.043  0.052 0.054  0.082 0.087 
DINO -0.014 0.018  0.036 0.042  0.050 0.043  0.071 0.079 
LCDM -0.033 0.035  -0.030 0.059  -0.029 0.063  -0.013 0.052 
 
 No. items = 30 
 True DCM   = 3   = 2   = 0.8 
Model Q3 |Q3|  Q3 |Q3|  Q3 |Q3|  Q3 |Q3| 
Simple -0.003 0.009  0.030 0.030  0.035 0.036  0.052 0.052 
CRUM -0.015 0.018  -0.003 0.030  0.004 0.030  0.034 0.056 
DINA -0.002 0.009  0.085 0.085  0.099 0.100  0.131 0.134 
DINO -0.002 0.009  0.085 0.085  0.097 0.098  0.117 0.122 
LCDM -0.010 0.014  -0.003 0.030  0.002 0.030  0.028 0.055 

 
 

Interestingly, violations were higher for models that allowed only two levels of 

probability (DINO and DINO) compared to DCMs that allowed for more than two 

(CRUM and LCDM) as seen in the above table.  Still, Q3 increased above and beyond 

the true DCM condition of no effect size for all models.  Thus, it was concluded that 

Yen’s Q3 adapted for DCMs as previously described could serve as a potentially useful 

diagnostic for detecting violations of local independence for diagnostic measurement.   
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Correct Classification 

 Overall examinee attribute pattern correct classification rates (CCR) by effect size 

across other conditions are presented in Table 12.  

 
Table 12. Pattern-wise Correct Classification Rate (CCR) by Effect Size across Other 
Conditions  
 

  True DCM  = 3  = 2  = 0.8 
Mean  0.910 0.591 0.495 0.352 
SD  0.040 0.113 0.087 0.027 
Min  0.802 0.413 0.358 0.297 
Max  0.996 0.818 0.664 0.399 
N*  1,000 1,000 1,000 1,000 

  *Note. Each one of 1,000 replications had n = 10,000 simulees. 
 
 

The True DCM condition (no LI violation) had CCR = 0.91 (min = 0.802, max = 

0.995), while CCR for effect sizes  = 3, 2, and 0.8 were 0.591, 0.495, and 0.352, 

respectively.  However, marginalizing across models, test length, and complexity 

conditions does not convey the full range of findings.  Figure 13 provides condition-

specific CCRs.   

Again, correct classification was high and around expected magnitude for the 

True DCM (no effect size) condition for both simple and complex structure.  For simple 

structure, CCRs eroded about the same magnitude for either test length as effect size 

decreased to  = 2 (CCR=0.621 for 15 item length and 0.652 for 30) and then to  = 0.8 

(0.375 for 15 items and 0.387 for 30 items).  Under complex structure, the pattern of how 

CCR changed according to the specific DCM as effect size decreased is compelling.  

Specifically, the degradation of CCR was greater for the CRUM and LCDM (comparable 
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to each other) relative to that observed for the DINA and the DINO models (again 

comparable to each other).  Here, CCR was approximately 0.51 on average for the DINA 

and DINO models when  = 2 but decreased to 0.39 on average for the CRUM as well as 

for the LCDM.  As  decreased to 0.8, the average CCR for DINA = 0.37 and for DINO 

= 0.36 while for the CRUM and LCDM were both at 0.31 on average.  These above rates 

are based on 30 items, whereby results under 15 items were similar but with greater 

variation observed in CCRs.   

While these findings indicate impact on pattern-wise correct classification, 

marginal attribute-specific correct classification was also examined.  Table 13 describes 

the overall attribute-specific CCR by effect size across other conditions. 
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Figure 13. Condition-specific Attribute Pattern-wise Correct Classification Rates 
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Table 13. Attribute-wise Correct Classification Rate (CCR) by Effect Size across Other 
Conditions  

 

 
 

True DCM  = 3  = 2  = 0.8 
Mean  0.967 0.789 0.718 0.600 

SD  0.017 0.066 0.059 0.029 
Min  0.880 0.625 0.595 0.544 
Max  1.000 0.946 0.867 0.687 

N*  3,000 3,000 3,000 3,000 
  *Note. Each one of 1,000 replications had n = 10,000 simulees times 3 attributes each. 
 
 

The True DCM condition (no LI violation) had CCR = 0.967 (min = 0.880), while 

CCR for effect sizes  = 3, 2, and 0.8 were 0.789, 0.718, and 0.600, respectively.  Thus, 

only 60% of examinees were classified correctly on any given skill when the LI violation 

was large ( = 0.8), compared to 96.7% with no violation.  However, marginalizing 

across models, test length, and complexity conditions again does not convey the full 

range of findings.  Figure 14 provides the attribute-specific CCRs by study condition.  

  



Figure 14. Condition-specific Attribute-wise Correct Classification Rates 
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The findings mirror those for pattern-wise correct classification.  Simple structure 

cases were less impacted by decreasing effect sizes relative to complex structure.  

Interestingly, the degradation of CCR was not as great for the CRUM and LCDM 

(comparable to each other) relative to that for the DINA and the DINO models (again 

comparable to each other).  Here, attribute-wise CCR was approximately 0.70 on average 

for the DINA and DINO models when  = 2 but decreased to 0.66 on average for the 

CRUM and LCDM.  As  decreased to 0.8, the average CCR for the DINA and DINO 

models was 0.59 while for the CRUM and LCDM were both at 0.57 on average (based on 

30 items).  Thus, examining Figure 14 above the difference between the models appears 

to be at  = 3 and 2 but when  decreases to 0.8 all models perform similarly poor in 

classifying examinees on individual attributes.   

Correct classification was further examined by grouping examinees into three 

categories: those with skill patterns of (0, 0, 0), those with skill patterns of (1, 1, 1), and 

everyone else.  The following overall cross-tabulation describes the CCR according to 

effect size and category: 
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Table 14. Correct Classification Rate According to Effect Size and Skill Pattern Category 
 

Estimated  True  
True DCM (0,0,0) All others (1,1,1) 

(0,0,0) 2,967,584 (95.8)    243,592 (  6.4)           116 (<0.1) 
All others    130,370 (  4.2) 3,378,951 (88.9)      92,894 (  3.0) 

(1,1,1)           137 (<0.1)    178,388 (  4.7) 3,007,968 (97.0) 
    

 = 3 (0,0,0) All others (1,1,1) 
(0,0,0) 2,131,660 (68.8)    808,487 (21.3)    276,811 (  8.9) 

All others    677,504 (21.9) 2,247,472 (59.1)    670,042 (21.6) 
(1,1,1)    288,927 (  9.3)    744,972 (19.6) 2,154,125 (69.5) 

    
 = 2 (0,0,0) All others (1,1,1) 

(0,0,0) 1,870,126 (60.4) 1,002,752 (26.4)    467,252 (15.1) 
All others    744,394 (24.0) 1,838,382 (48.4)    742,027 (23.9) 

(1,1,1)    483,571 (15.6)    959,797 (25.3) 1,891,699 (61.0) 
    

 = 0.8 (0,0,0) All others (1,1,1) 
(0,0,0) 1,484,616 (47.9) 1,295,499 (34.1)    831,130 (26.8) 

All others    773,937 (25.0) 1,229,258 (32.3)    776,393 (25.0) 
(1,1,1)    839,538 (27.1) 1,276,174 (33.6) 1,493,455 (48.2) 

*Note. Numbers reported are frequency and column percentage.  Rates are based on 
1,000 replications each with 10,000 simulees.  

 
 

Thus, as effect size decreases correct classifications obviously degenerate.  

Interestingly, as effect sizes get smaller the off-diagonal of the above contingency table 

that increases the most is the misclassification from (0,0,0) to all other patterns besides 

(1,1,1).  Here, this column percentage goes from 6.4% for true DCM to 21.3% for  = 3, 

26.4% for  = 2, to 34.1% for  = 0.8.  Similar increases in misclassification from (1,1,1) 

to all others are observed (4.7% for true DCM increasing to 33.6% for  = 0.8). 

Item Parameter Recovery 

 Bias in item parameter recovery was examined and the following scatterplots 

convey estimated intercepts versus true for test length of 15 and 30 items: 
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Figure 15. Scatterplot of True Value of the Intercept, 0, versus Estimated Value for 15 Items 
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Figure 16. Scatterplot of True Value of the Intercept, 0, versus Estimated Value for 30 Items 
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For simple structure, as effect size decreases the variability in estimated logits of 

correct response for complete nonmasters become more variable.  This is greatly more so 

for complex structure, where even for an effect size of  = 3 intercepts diverge non-

trivially from true value for the CRUM and LCDM.  By the time  decreases to 0.8 (large 

LI violation), estimation of the intercepts for the CRUM and LCDM are suspect.  It is 

noteworthy that while the same phenomena were observed for the DINO and DINA 

models, the impact on estimated values appeared to be much less so compared to the 

CRUM and LCDM which allow for >2 probability levels.  This is also be directly 

observed by examining magnitude of differences using bias and MAD measures which 

are described next. 
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Figure 17. Bias in Parameter Recovery of the Intercept, 0 
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Figure 18. MAD in Parameter Recovery of the Intercept, 0         
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 From the above, the true DCM (no effect size/no LI violation) was unbiased for 

the intercept across complexity, model, and test length, as expected (also see Table 14).  

For simple structure, impact on the intercept was markedly less than that relative to 

models in complex structure, although both bias and MAD increased as effect size 

decreased as anticipated.  The boxplots for both bias and MAD demonstrate how much 

more estimated intercepts were impacted for the LCDM and CRUM compared to the 

DINA and DINO models.  The distribution of bias and MAD became noticeably skewed 

for the smallest effect size of  = 0.8 for the LCDM in particular (e.g., MAD = 2.3 for 15 

items and 2.8 for 30 items).  This is quantified further in the following table of average 

values of bias and MAD of the intercept by study conditions. 

 
Table 15. Bias and MAD of the Intercept, 0, by Study Conditions 
 
 No. items = 15 
 True DCM   = 3   = 2   = 0.8 
Model Bias MAD  Bias MAD  Bias MAD  Bias MAD
Simple -0.001 0.036  0.154 0.166  0.096 0.186  -0.450 0.501
CRUM -0.004 0.040  -0.358 0.682  -0.746 1.057  -2.020 2.121
DINA -0.003 0.035  -0.047 0.195  -0.289 0.389  -1.309 1.317
DINO -0.002 0.041  0.344 0.443  0.165 0.490  -0.470 0.781

LCDM -0.005 0.045  -0.402 0.738  -0.800 1.128  -2.209 2.292
 

 No. items = 30 
 True DCM   = 3   = 2   = 0.8 
Model Bias MAD  Bias MAD  Bias MAD  Bias MAD
Simple -0.001 0.033  0.202 0.203  0.169 0.210  -0.382 0.446
CRUM -0.001 0.037  -0.613 0.854  -1.065 1.299  -2.523 2.591
DINA -0.002 0.032  -0.129 0.218  -0.427 0.485  -1.673 1.680
DINO 0.001 0.039  0.369 0.463  0.128 0.472  -0.562 0.802

LCDM -0.001 0.044  -0.713 0.968  -1.163 1.383  -2.686 2.759
 
 
  



113

Figure 19. Scatterplot of True Value of Sum of Weights versus Estimated Value for 15 Items 
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 Because LI violation was introduced in particular through increasing variance 

according to the effect size in Eq. (51), parameter recovery for the sum of LCDM weights 

above the intercept was also examined using similar methods.  The following scatterplots 

relate estimated sums of weights versus true sums for test length of 15 and 30 items: 

For simple structure, as effect size decreases the variability in estimated 

increments in the logit of correct response for complete masters appears to attenuate.  For 

complex structure, a great deal of more variability in sums is observed, where even for an 

effect size of  = 3 the sums diverge non-trivially from true value for the CRUM and 

LCDM.  As  decreases to 0.8 (large LI violation), estimation of the sums for the CRUM 

and LCDM is degraded.  Interestingly, this pattern for the DINO and DINA models also 

was reproduced but to a much lesser degree.  These relationships are further examined 

regarding their magnitude of differences using bias and MAD measures described next. 
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Figure 20. Scatterplot of True Value of Sum of Weights versus Estimated Value for 30 Items 
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Figure 21. Bias in Parameter Recovery of Sum of Weights above λ0 
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Figure 22. MAD in Parameter Recovery of Sum of Weights above λ0 
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Table 16. Bias and MAD of Sum of Weights above 0 by Study Conditions 

 No. items = 15 
 True DCM   = 3   = 2   = 0.8 
Model Bias MAD  Bias MAD  Bias MAD  Bias MAD
Simple 0.001 0.052  -0.301 0.315  -0.207 0.356  0.895 0.980
CRUM 0.003 0.063  0.709 1.357  1.471 2.101  4.103 4.267
DINA 0.002 0.056  -0.306 0.520  0.077 0.715  1.641 1.781
DINO 0.004 0.055  -0.289 0.514  0.090 0.697  1.623 1.747

LCDM 0.005 0.062  0.674 1.331  1.454 2.093  4.354 4.492
 

 No. items = 30 
 True DCM   = 3   = 2   = 0.8 
Model Bias MAD  Bias MAD  Bias MAD  Bias MAD
Simple 0.001 0.048  -0.409 0.410  -0.345 0.407  0.744 0.861
CRUM 0.001 0.058  1.249 1.717  2.171 2.630  5.220 5.343
DINA 0.004 0.051  -0.265 0.525  0.236 0.713  2.069 2.172
DINO 0.000 0.051  -0.281 0.530  0.231 0.720  1.951 2.032

LCDM 0.001 0.059  1.239 1.725  2.156 2.564  5.320 5.438
 

It should be noted again that the effect size was introduced using the average of 

the sum of weights across items for a given replication while parameter recovery is 

studied for individual items.  Again the true DCM (no effect size) was unbiased for the 

sum of weights above the intercept across complexity, model, and test length, as 

expected.  For simple structure, impact on sums was notably less than that relative to 

models in complex structure (e.g., MAD almost half), although both bias and MAD still 

increased as effect size decreased as anticipated.  The boxplots for both bias and MAD 

again convey increased impacted for the LCDM and CRUM compared to the DINA and 

DINO models.  The distribution of bias and MAD for the sum of weights excluding the 

intercept was again markedly skewed for the smallest effect size of  = 0.8 for the 

LCDM in particular (e.g., MAD = 4.5 for 15 items and 5.4 for 30 items).   
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Association among Attributes 

 Figure 23 provides the comparison of estimated attribute-to-attribute associations 

relative to the true correlation value of 0.70.   

Results from analysis of simple structure items demonstrated lower discrepancies 

with the true attribute correlation relative to complex structure.  For complex structure, as 

violation of local independence increase (i.e, decreasing effect size), positive bias 

incrementally increased for the DINA and DINO models.  Interestingly, a different 

pattern was observed for the CRUM and LCDM.  Here, differences with true correlation 

were similar on average for  = 2 relative to true DCM (although more variable), but 

only when  = 0.8 did the positive bias in estimated attribute-to-attribute correlations 

start to increase in magnitude to a greater degree. 
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Figure 23. Difference between Estimated Attribute-to-Attribute Correlations from True 0.70 
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CHAPTER V 
 

CONCLUSIONS 
 
 
 Evidence was found that nonzero variance of companion continuous latent traits 

causes detectable violations of the assumption of local independence in diagnostic 

measurement, and also degrades ability to recover DCM parameters and perform 

classification correctly.  This finding is consistent with Hansen (2013), although it is 

interesting how much more impact was observed for the saturated LCDM which was 

only examined in the current study.  The LCDM allows for more than two probability 

levels to be analyzed (e.g., unlike the DINA) so that overlapping distributions from 

partial masters appeared to cause further degradation in findings.  This was consistent 

with the other studied model that possesses multiple probability levels, the CRUM.   

The current study findings with respect to Yen’s Q3 suggest several implications 

for practitioners, as it was found that increasing continuous ability variance generated 

from the MCCIRM lead to larger values of Q3.  The mean values (without taking 

absolute value first) presented in Table 11 in Results provide a basis for preliminary 

guidelines of empirical evidence indicating local independence violation in DM.  That is, 

because Q3 as assessed in this study can be computed when performing diagnostic 

classification, practitioners can calculate this statistic first and inspect its magnitude 

before moving on to the interpretation phase of the DM investigation.  This evidence 

should be considered specific to the DCM being implemented, and also potentially 
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further differentiated by test length.  When a diagnostic assessment has 30 items, a Yen’s 

Q3 > 0.03 could indicate possible local dependence for the CRUM and LCDM under an 

average complexity of two.  For the same test length and complexity under the DINA and 

DINO, a Yen’s Q3 > 0.10 could be indicative of possible local dependence.  For an 

assessment with 15 items, a positive Q3 (value > 0) for the LCDM or CRUM assuming 

average complexity of two could indicate LI violation (as well as for simple structure 

items).  The threshold for the DINA and DINO models is suggested to be raised to Q3 > 

0.06 for indicating problem levels under similar conditions.  A caveat here is that 15 

items may be too few to study up to three attributes under average complexity of two for 

the CRUM or LCDM under the particular LI violations examined in this study.  Future 

studies should examine these models further under similar or even smaller test lengths to 

increase understanding of patterns in performance.  It should be noted that these very 

preliminary guidelines are somewhat conservative as they denote rules of thumb 

according to observed Q3 values approaching those for the most extreme effect size of  

= 0.8.  Another issue with recommending one-size-fits-all guidelines is that they can 

suffer from similar pitfalls as those noted by Kline (2011) in his discussion of Hu and 

Bentler’s (1999) recommendations for fit indices in structural equation modeling.  In the 

same way, these guidelines should not be generalized to all DCM situations and extensive 

future research as noted below could provide refinement of advice for practitioners.   

Findings on degeneration of item parameter recovery and diagnostic classification 

were as expected in the current study, although differences by model and complexity 

conditions were noted.  That is, increasing continuous ability variance introduced through 
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the MCCIRM lead to substantial poor performance in both item parameter recovery and 

accuracy of performing diagnostic classification correctly.  Overestimation of attribute-

to-attribute correlations were also found as continuous ability variance increased, 

especially for the DINA and DINO models under complex structure (while the 

correlations under simple structure were relatively impacted less).  Results of heightened 

negative impact for the increasingly parameterized, more flexible DCMs of the CRUM 

and LCDM are in alignment with the conceptual expectations outlined in Compensatory 

Processes for Complex Structure described in the Review of the Literature.  This could be 

due in part that with the DINO and DINA DCMs, only one additional weight besides the 

intercept is estimated.  However, in the CRUM and LCDM under complex structure the 

effective effect size was even more extreme, due to the allowed presence of more than 

two mastery mixtures even though ability variance was introduced through a simple 

structure effect size specification.  Thus, correct classification was degraded under 

complex structure and under compensatory processes, and was even more impacted when 

both of these conditions were examined in conjunction.  Triangulating with conclusions 

regarding Q3, the CRUM and LCDM had lower observed Q3 values for more extreme LI 

violation relative to DINA or DINO models, yet were impacted to a greater degree on 

parameter recovery and especially correct classification under complex structure.  

Together this underlines the suggestion one Q3 guideline for all DCMs should be avoided 

and motivate model-specific preliminary guidelines for practice. 

From the Introduction and Appendix A, it was hypothesized that effect sizes 

would be effectively smaller under complex structure relative to simple structure if  was 
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introduced into the data through simple structure calculations only and contrasting 

complete skill masters with nonmasters.  This was applied for all items within a given 

replication, and note that in the complex structure condition that target average item-to-

attribute complexity = 2 that some items possessed simple structure.  Thus, as the ratio of 

simple structure items within complex structure condition decreases then so does the 

effective magnitude of , because of the additional contribution due to correlated 

abilities.  Further, it would be interesting to see how findings improve as correlation 

among abilities decreases (e.g., r (, ) = 0.35 instead of 0.70 in this study).  Future 

research could further delineate this relationship on impact.    

In the same way additional effect sizes of other magnitudes could be considered 

for future study (e.g.,  = 0.2, 1.4, 5).  The chosen effect sizes of  = 3 corresponded to 

an overlap coefficient (OVL) of 13.4% (i.e., adjacent Normal distributions overlapped 

31.7%),  = 2 had OVL = 31.7%, and  = 0.8 had OVL = 68.9%.  This overlap 

essentially implies that some skill nonmasters have higher probability of correct item 

response than masters, which should inhibit ability to distinguish masters of skills from 

nonmasters.  It was indeed observed that results exhibited poor performance for these 

effect sizes in an increasing fashion.  However, the current study only examined the case 

where each attribute had a single companion continuous latent ability.  While Hansen 

(2013) focused on testlet effects with one, two, and four abilities, future research could 

consider variants of either the current study or Hansen (2013) and examine if LI 

violations are extreme for say only some particular attributes.  Another possibility for  
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future study is to introduce ability variance through a different mechanism (e.g., one 

ability per skill profile), as discussed in Introducing Systematic Within-Class Variation 

from Different Mechanisms in Review of the Literature. 

Another feature of the current study was only examining CMIRT aspects of 

continuous ability contributions of the particular generating model chosen, the MCCIRM.  

This generating model choice played a role in impact on outcomes.  For example, as 

delineated in Appendix A, correlated abilities effectively decreased the effect size 

constructed under simple structure when there more than one ability required for complex 

structure.  However, the original full MCCIRM of Henson et al. (2014) which includes 

interactions of continuous abilities (akin to the saturated LCDM for attributes) could be 

studied in future research.  Chalmers and Flora (2014) reported that product MIRT 

models with such interactions provided some similar results to truly NCMIRT models 

where the entire item response functions are multiplied (but some reservations were 

given).  Hong et al. (2015) have proposed a multiplicative hybrid DINA-NCMIRT 

diagnostic model as well.  Thus, performance in unified models of a noncompensatory 

nature could be studied in the future as well.  Finally, the current study only considered 

particular choices about Q-matrix design, assigning weights to various DCMs (especially 

the saturated LCDM) and did not examine all DCMs in extant literature (e.g., NIDO, 

Reduced RUM).  Future investigations could study these models and conditions and their 

effects on findings.   

In sum, increasing continuous ability variance was observed to result in more 

estimation effort, less ability to recover DCM parameters, lower proportion of attribute 
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pattern and attribute-specific correct classification, and over-estimation of attribute-to-

attribute associations.  Further, if such increasing variance is conceptualized as violation 

of LI, then detection through Yen’s Q3 statistic appears to be possible and practitioners 

can use the preliminary guidelines suggested above until future research suggests 

refinements.  Jurich (2014) and Hansen (2013) both report on potential usefulness of 

other limited information fit statistics for such purposes for DCMs besides Q3.  Finally, 

patterns of findings appeared to be condition-specific, such that differential effects were 

observed for the various DCMs under study and according to simple versus complex 

structure.  Validity of use and interpretation is threatened when measurement 

assumptions are violated.  The local independence assumption for DCM was increasingly 

untenable when variance of continuous abilities was increasingly introduced.  Results 

from this study suggest estimation and classification are besmirched under such a 

situation, and therefore estimable unified model approaches such as those proposed by 

Houts and Cai (2013) and Hong et al. (2015) are potentially promising to consider.  

Future research can help explicate the relationship among the salient issues further and 

further promote validity after diagnostic measurement. 
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APPENDIX A 
 

VARIANCE OF CONTINUOUS TRAIT COMPOSITE FOR COMPLEX STRUCTURE 
 
 

When multiple abilities are required for the i-th item for the e-th examinee 

(complex structure), one way to conceptualize this within the MCCIRM of Eq. (48) is to 

consider it as a weighted composite, θe
 , of the A multiple abilities, and in particular as 

discussed above, one ability per a attributes described by 

 
 

1

θ γ θ
A

e ia ea ia
a

c



. 

(A1)

 
 

This weighted ability composite aspect of the MCCIRM is akin to a “reference” 

composite (Reckase, 2009) estimated in a unidimensional IRT model when there are 

actually multiple underlying abilities.  If complex structure is present (i.e., ç > 1), the 

variance of the weighted composite,  θeVar  , can be expressed as 
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This can be re-written with only those required abilities (i.e., where all 1iac  ) and re-

enumerating starting at 1a  as  
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Now, an additional constraint in the current study by assuming γ ia is set to a fixed value 

for generation (rather than estimate it as in the C-MIRT model), where:  

 
 2 2 2 2

1 2γ γ γ γ .i i iA i    . (A4)

 
 

Given a common fixed γ .i is assumed in the above from Eq. (A3), then this can be 

rewritten as 
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Because the multiple θea could be drawn from a multivariate Normal distribution with 

possibly nonzero correlations among abilities, the variance of this weighted sum is given 

by 

 
 

     2

1 1

θ γ θ 2 θ ,θ.e i ea ea ea
a

ç

ça a

Var Var Cov 
   

 
  

 
 

. (A6)

 
 

For simplicity (and discussed later below) it is further assumed that γ 1.i  . Then, 

 
 

     
1 1

θ θ 2 θ ,θe ea ea ea

ç

ça a a

Var Var Cov 
   

  
. (A7)

 
 

So, to degenerate the total ability variance of θe
 , not only must the attribute-

specific variance of θea degenerate, but also the covariance of θea with the other abilities 

must be considered.  Again, this only practically influences the total variance of the 

weighted sum if there is a complex loading structure among involved items for abilities.  

Because   2
θθ σ .eeaVar  , an assumed common variance for all companion latent traits to 

attributes, then 

 
    2

θ
1

θ σ 2 θ ,θ.ee e
ç

ea a
a a

Var Covç 
  

  
. (A8)
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Now, the correlation is related to covariance by 

 
        

       θ ,θ θ ,θ θ θea ea ea ea ea eaCov Corr Var Var     . 
(A9)

 
 

Again, since a common ability variance 2
θσ .e is assumed, then 

 

             2
θθ ,θ θ ,θ σ .eea ea ea eaCov Corr   . (A10)

 
 
Assume  θ ,θea eaCorr   for all a a , a common correlation between pairs of traits.  

Here, the matrix of all such correlations among required abilities has the form 

 
            

             
 

1

1 I J

1

ç ç ç ç ç ç

 


 


 

  

 
 
      
 
 
 



 

   



, (A11) 

 
 

Where I


is a ç × ç identity matrix and J


is a ç × ç matrix of ones.  Thus,


 is 

assumed to be compound symmetric (Rencher, 2002) in this study, although other 

possibilities (e.g., unstructured correlation matrix) exist and can be studied in future 

research.  This then implies 

 
   2

θθ ,θ σ .eea eaCov   . (A12)
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Given that there is   21ç ç    terms in the double-sum over covariances in Eq. (A8), 

the variance of the ability weighted composite can be re-expressed as 

 
    2 2

θ θθ σ σ .1
e ee ç ç çVar   
�


. (A13)

 
 

Let this variance of the composite in the complex case be denoted as 
2
θ ,Cσ .e .  We 

similarly denote the variance in simple structure case to be 
2
θ ,Sσ .e .  In simple structure, 

the composite variance reduces to just the common variance assumed for an ability,

2 2
θ ,S θσ σ. .e e

 , because for simple structure 

 

        2
θ

1

γ θ θ σ .e

A

ia ea ea
a

Var Var


    
 
 . 

(A14)

 
 
As an example, assume complexity = 2 and common correlation among traits = 0.70 

leads to the following based on Eq. (A13): 

 
    2 2 2

θ θ θ2 1θ 2σ 2 σ 3.4σ. .0.7.e e eeVar  
. (A15)

 
 

Thus, that 
2 2
θ ,C θ ,Sσ σ. .e e

  as would be expected from the above.  So now a question is 

motivated: What scenarios would lead to 
2 2
θ ,C θ ,Sσ σ. .e e

 ?  This means that trait variance 
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is the same for complex and simple structure.  Under the previously mentioned 

assumptions, this would occur when 

 
  2 2 2 2

θ θ θ1γ σ σ σ. . . .e e ei ç ç ç     . (A16)

 
 
Assuming nonzero common variance and dividing through by results in 

 
  2γ 1. 1i ç ç ç     . (A17)

 
 

Thus, choosing values of γ .i in the following way gives the equality 

 
 

 
2 1
γ . 1i ç ç ç  

 . (A18)

 
 

An example is considered next. If 
2
θ 2,  andσ 1, 0 0. .7

e
ç   , then choosing 

2γ 1 3.4 0.2941.i   (and thus γ 0.5423.i  ) results in equality.  Therefore, whenever 

 
 

 
2 1
γ . 1i ç ç ç  

 , (A19)

 
 

And under the previous assumptions, then 
2 2
θ ,C θ ,Sσ σ. .e e

  which means that the total 

ability variance of the weight composite is greater in the complex case than in simple 

structure.  When this occurs, the effect size,  , from Eq. (51) will be smaller because its 
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denominator will be larger whenever there is complex structure.  Overall, choosing γ 1.i   

is made throughout the current study, which allows easy implementation but guarantees 

that 
2 2
θ ,C θ ,Sσ σ .e e


�

 as would be expected from the above.  Thus, under these conditions 

complex structure is hypothesized to have a detrimental effect on diagnostic classification 

relative to simple structure because of this nature of the composite variance and the 

covariance introduced by the individual positively correlated abilities.  However, it is 

notable that from Eq. (A6) that as the  θ 0eaVar  , then so must the  θ ,θ 0ea eaCov    

(because of Eq. (A13) under the assumptions).  Thus, when ability variance degenerates 

the total composite ability variance does also, even with positively correlated traits.  
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