52 research outputs found

    Relationships Between Sulcal Asymmetries and Corpus Callosum Size: Gender and Handedness Effects

    Get PDF
    Magnetic resonance imaging was used to establish the presence and nature of relationships between sulcal asymmetries and mid-sagittal callosal size in neurologically intact subjects, and to determine the influences of sex and handedness. Against a background of long-standing disputes, effects of gender and handedness on callosal size, shape, and variability were additionally examined. Both positive and negative correlations between sulcal asymmetry and callosal size were observed, with effects influenced by sex and handedness. The direction of relationships, however, were dependent on the regional asymmetry measured and on whether real or absolute values were used to quantify sulcal asymmetries. Callosal measurements showed no significant effects of sex or handedness, although subtle differences in callosal shape were observed in anterior and posterior regions between males and females and surface variability was increased in males. Individual variations in callosal size appear to outrange any detectable divergences in size between groups. Relationships between sulcal asymmetries and callosal size, however, are influenced by both sex and handedness. Whether magnitudes of asymmetry are related to increases or decreases in callosal size appears dependent on the chosen indicators of asymmetry. It is an oversimplification, therefore, to assume a single relationship exists between cerebral asymmetries and callosal connection

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Physiologic Neuroanatomy: New Brain Imaging Methods Present a Challenge to an Old Discipline

    No full text

    Modulation of motor and premotor activity during imitation of Target-directed actions

    No full text
    Item does not contain fulltextBehavioral studies reveal that imitation performance and the motor system are strongly influenced by the goal of the action to be performed. We used functional magnetic resonance imaging (fMRI) to assess the effect of explicit action goals on neural activity during imitation. Subjects imitated index finger movements in the absence and presence of visible goals (red dots that were reached for by the finger movement). Finger movements were either ipsilateral or contralateral. The pars opercularis of the inferior frontal gyrus showed increased blood oxygen level-dependent fMRI signal bilaterally for imitation of goal-oriented actions, compared with imitation of actions with no explicit goal. In addition, bilateral dorsal premotor areas demonstrated greater activity for goal-oriented actions, for contralateral movements and an interaction effect such that goal-oriented contralateral movements yielded the greatest activity. These results support the hypothesis that areas relevant to motor preparation and motor execution are tuned to coding goal-oriented actions and are in keeping with single-cell recordings revealing that neurons in area F5 of the monkey brain represent goal-directed aspects of actions
    corecore