1,307 research outputs found

    Expert System Control of Plant Growth in an Enclosed Space

    Get PDF
    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals

    Expert system for controlling plant growth in a contained environment

    Get PDF
    In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an "expert system" which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the "expert system" remotely, to assess activity within the growth chamber, and can override the "expert system"

    Expert system for controlling plant growth in a contained environment

    Get PDF
    In a system for optimizing crop growth, vegetation is cultivated in a contained environment, such as a greenhouse, an underground cavern or other enclosed space. Imaging equipment is positioned within or about the contained environment, to acquire spatially distributed crop growth information, and environmental sensors are provided to acquire data regarding multiple environmental conditions that can affect crop development. Illumination within the contained environment, and the addition of essential nutrients and chemicals are in turn controlled in response to data acquired by the imaging apparatus and environmental sensors, by an ''expert system'' which is trained to analyze and evaluate crop conditions. The expert system controls the spatial and temporal lighting pattern within the contained area, and the timing and allocation of nutrients and chemicals to achieve optimized crop development. A user can access the ''expert system'' remotely, to assess activity within the growth chamber, and can override the ''expert system''

    The hydrogen effects on materials program at NIST-Boulder

    Get PDF
    Please click Additional Files below to see the full abstrac

    The Acute Effects of the Atypical Dissociative Hallucinogen Salvinorin A on Functional Connectivity in the Human Brain

    Get PDF
    Salvinorin A (SA) is a κ-opioid receptor agonist and atypical dissociative hallucinogen found in Salvia divinorum. Despite the resurgence of hallucinogen studies, the effects of κ-opioid agonists on human brain function are not well-understood. This placebo-controlled, within-subject study used functional magnetic resonance imaging for the first time to explore the effects of inhaled SA on strength, variability, and entropy of functional connectivity (static, dynamic, and entropic functional connectivity, respectively, or sFC, dFC, and eFC). SA tended to decrease within-network sFC but increase between-network sFC, with the most prominent effect being attenuation of the default mode network (DMN) during the first half of a 20-min scan (i.e., during peak effects). SA reduced brainwide dFC but increased brainwide eFC, though only the former effect survived multiple comparison corrections. Finally, using connectome-based classification, most models trained on dFC network interactions could accurately classify the first half of SA scans. In contrast, few models trained on within- or between-network sFC and eFC performed above chance. Notably, models trained on within-DMN sFC and eFC performed better than models trained on other network interactions. This pattern of SA effects on human brain function is strikingly similar to that of other hallucinogens, necessitating studies of direct comparisons

    Occupy: in theory and practice

    Get PDF
    This paper situates the discourse of the Occupy movement within the context of radical political philosophy. Our analysis takes place on two levels. First, we conduct an empirical analysis of the ‘official’ publications of Occupy Wall Street (OWS) and Occupy London (OL). Operationalising core concepts from the framing perspective within social movement theory, we provide a descriptive-comparative analysis of the ‘collective action frames’ of OWS and OL. Second, we consider the extent to which radical political philosophy speaks to the discourse of Occupy. Our empirical analysis reveals that both movements share diagnostic frames, but there were notable differences in terms of prognostic framing. The philosophical discussion suggests that there are alignments between anarchist, post-anarchist and post-Marxist ideologies at the level of both identity and strategy. Indeed, the absence of totalising anti-capitalist or anti-statist positions in Occupy suggests that – particularly with Occupy London – alignments are perhaps not so distant from typically social democratic demands

    Elevated CRP and TNF-α Levels are Associated with Blunted Neural Oscillations Serving Fluid Intelligence

    Get PDF
    INTRODUCTION: Inflammatory processes help protect the body from potential threats such as bacterial or viral invasions. However, when such inflammatory processes become chronically engaged, synaptic impairments and neuronal cell death may occur. In particular, persistently high levels of C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-α) have been linked to deficits in cognition and several psychiatric disorders. Higher-order cognitive processes such as fluid intelligence (Gf) are thought to be particularly vulnerable to persistent inflammation. Herein, we investigated the relationship between elevated CRP and TNF-α and the neural oscillatory dynamics serving Gf. METHODS: Seventy adults between the ages of 20-66 years (Mean = 45.17 years, SD = 16.29, 21.4% female) completed an abstract reasoning task that probes Gf during magnetoencephalography (MEG) and provided a blood sample for inflammatory marker analysis. MEG data were imaged in the time-frequency domain, and whole-brain regressions were conducted using each individual\u27s plasma CRP and TNF-α concentrations per oscillatory response, controlling for age, BMI, and education. RESULTS: CRP and TNF-α levels were significantly associated with region-specific neural oscillatory responses. In particular, elevated CRP concentrations were associated with altered gamma activity in the right inferior frontal gyrus and right cerebellum. In contrast, elevated TNF-α levels scaled with alpha/beta oscillations in the left anterior cingulate and left middle temporal, and gamma activity in the left intraparietal sulcus. DISCUSSION: Elevated inflammatory markers such as CRP and TNF-α were associated with aberrant neural oscillations in regions important for Gf. Linking inflammatory markers with regional neural oscillations may hold promise in identifying mechanisms of cognitive and psychiatric disorders
    • …
    corecore