67 research outputs found

    Jovian Auroral Ion Precipitation: X‐Ray Production From Oxygen and Sulfur Precipitation

    Get PDF
    Many attempts have been made to model X‐ray emission from both bremsstrahlung and ion precipitation into Jupiter's polar caps. Electron bremsstrahlung modeling has fallen short of producing the total overall power output observed by Earth‐orbit‐based X‐ray observatories. Heavy ion precipitation was able to reproduce strong X‐ray fluxes, but the proposed incident ion energies were very high ( urn:x-wiley:jgra:media:jgra55396:jgra55396-math-00011 MeV per nucleon). Now with the Juno spacecraft at Jupiter, there have been many measurements of heavy ion populations above the polar cap with energies up to 300–400 keV per nucleon (keV/u), well below the ion energies required by earlier models. Recent work has provided a new outlook on how ion‐neutral collisions in the Jovian atmosphere are occurring, providing us with an entirely new set of impact cross sections. The model presented here simulates oxygen and sulfur precipitation, taking into account the new cross sections, every collision process, the measured ion fluxes above Jupiter's polar aurora, and synthetic X‐ray spectra. We predict X‐ray fluxes, efficiencies, and spectra for various initial ion energies considering opacity effects from two different atmospheres. We demonstrate that an in situ measured heavy ion flux above Jupiter's polar cap is capable of producing over 1 GW of X‐ray emission when some assumptions are made. Comparison of our approximated synthetic X‐ray spectrum produced from in situ particle data with a simultaneous X‐ray spectrum observed by XMM‐Newton shows good agreement for the oxygen part of the spectrum but not for the sulfur part

    New Perspectives on Substorm Injections

    Get PDF
    There has been significant progress in understanding substorm injections since the Third International Conference on Substorms in 1996. Progress has come from a combination of new theories, quantitative modeling, and observations--particularly multi-satellite observations. There is now mounting evidence that fast convective flows are the mechanism that directly couples substorm processes in the mid tail, where reconnection occurs, with substorm processes the inner magnetosphere where Pi2 pulsations, auroral breakups, and substorm injections occur. This paper presents evidence that those flows combined with an earthward-propagating compressional wave are responsible for substorm injections and discusses how that model can account for various substorm injection signatures

    Intervals of Intense Energetic Electron Beams Over Jupiter's Poles

    Get PDF
    Juno's Jupiter Energetic particle Detector Instrument often detects energetic electron beams over Jupiter's polar regions. In this paper, we document a subset of intense magnetic field‐aligned beams of energetic electrons moving away from Jupiter at high magnetic latitudes both north and south of the planet. The number fluxes of these beams are often dominated by electrons with energies above about 1 MeV. These very narrow beams can create broad angular responses in the Jupiter Energetic particle Detector Instrument with unique signatures in the detector count rates, probably because of >10 MeV electrons. We use these signatures to identify the most intense beams. These beams occur primarily above the swirl region of the polar cap aurora. This polar region is described as being of low brightness and high absorption and the most magnetically “open” at Jupiter

    A pulsating auroral X-ray hot spot on Jupiter

    Get PDF
    Jupiter's X-ray aurora has been thought to be excited by energetic sulphur and oxygen ions precipitating from the inner magnetosphere into the planet's polar regions(1-3). Here we report high-spatial-resolution observations that demonstrate that most of Jupiter's northern auroral X-rays come from a 'hot spot' located significantly poleward of the latitudes connected to the inner magnetosphere. The hot spot seems to be fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared(4-7) and ultraviolet(8) emissions have also been observed. We infer from the data that the particles that excite the aurora originate in the outer magnetosphere. The hot spot X-rays pulsate with an approximately 45-min period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft(9,10). These results invalidate the idea that jovian auroral X-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the inner magnetosphere. Instead, the X-rays seem to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62624/1/4151000a.pd

    Substorm Effects in MHD and Test Particle Simulations of Magnetotail Dynamics

    Full text link
    Recent magnetohydrodynamic simulations demonstrate that a global tail instability, initiated by localized breakdown of MHD, can cause plasmoid formation and ejection as well as dipolarization and the current diversion of the substorm current wedge. The connection between the reconnection process and the current wedge signatures is provided by earthward flow from the reconnection site. Its braking and diversion in the inner magnetosphere causes dipolarization and the magnetic field distortions of the current wedge. The authors demonstrate the characteristic properties of this process and the current systems involved. The strong localized electric field associated with the flow burst and the dipolarization is also the cause of particle acceleration and energetic particle injections. Test particle simulations of orbits in the MHD fields yield results that are quite consistent with observed injection signatures

    The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission

    Get PDF
    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi‐perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ∼100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi‐perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05–0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first‐time 3‐D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi‐linear pitch angle diffusion and possible signatures of nonlinear interaction with high‐amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes

    Hippocampal state-dependent behavioral reflex to an identical sensory input in rats.

    Get PDF
    We examined the local field potential of the hippocampus to monitor brain states during a conditional discrimination task, in order to elucidate the relationship between ongoing brain states and a conditioned motor reflex. Five 10-week-old Wistar/ST male rats underwent a serial feature positive conditional discrimination task in eyeblink conditioning using a preceding light stimulus as a conditional cue for reinforced trials. In this task, a 2-s light stimulus signaled that the following 350-ms tone (conditioned stimulus) was reinforced with a co-terminating 100-ms periorbital electrical shock. The interval between the end of conditional cue and the onset of the conditioned stimulus was 4±1 s. The conditioned stimulus was not reinforced when the light was not presented. Animals successfully utilized the light stimulus as a conditional cue to drive differential responses to the identical conditioned stimulus. We found that presentation of the conditional cue elicited hippocampal theta oscillations, which persisted during the interval of conditional cue and the conditioned stimulus. Moreover, expression of the conditioned response to the tone (conditioned stimulus) was correlated with the appearance of theta oscillations immediately before the conditioned stimulus. These data support hippocampal involvement in the network underlying a conditional discrimination task in eyeblink conditioning. They also suggest that the preceding hippocampal activity can determine information processing of the tone stimulus in the cerebellum and its associated circuits

    Electron-scale measurements of magnetic reconnection in space

    No full text
    Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using very high time resolution measurements, NASA’s Magnetospheric Multiscale Mission (MMS) has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth’s magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy, (ii) measured the electric field and current, which together cause the dissipation of magnetic energy, and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region

    An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids

    Get PDF
    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid-based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids

    Wind anisotropies and GRB progenitors

    Get PDF
    We study the effect of wind anisotropies on the stellar evolution leading to collapsars. Rotating models of a 60 M_\odot star with Ω/Ωcrit=0.75\Omega/\Omega_{\rm crit}=0.75 on the ZAMS, accounting for shellular rotation and a magnetic field, with and without wind anisotropies, are computed at ZZ=0.002 until the end of the core He-burning phase. Only the models accounting for the effects of the wind anisotropies retain enough angular momentum in their core to produce a Gamma Ray Burst (GRB). The chemical composition is such that a type Ic supernova event occurs. Wind anisotropies appear to be a key physical ingredient in the scenario leading to long GRBs.Comment: 5 pages, 4 figures, accepted for publication in A&A Lette
    corecore