4,236 research outputs found
Gravitational Techniwaves
We investigate the production and possible detection of gravitational waves
stemming from the electroweak phase transition in the early universe in models
of minimal walking technicolor. In particular we discuss the two possible
scenarios in which one has only one electroweak phase transition and the case
in which the technicolor dynamics allows for multiple phase transitions.Comment: 30 pages, 5 figures. v2: minor changes, references added, title
changed in journa
The Electroweak Phase Transition in Ultra Minimal Technicolor
We unveil the temperature-dependent electroweak phase transition in new
extensions of the Standard Model in which the electroweak symmetry is
spontaneously broken via strongly coupled, nearly-conformal dynamics achieved
by the means of multiple matter representations. In particular, we focus on the
low energy effective theory introduced to describe Ultra Minimal Walking
Technicolor at the phase transition. Using the one-loop effective potential
with ring improvement, we identify regions of parameter space which yield a
strong first order transition. A striking feature of the model is the existence
of a second phase transition associated to the electroweak-singlet sector. The
interplay between these two transitions leads to an extremely rich phase
diagram.Comment: 38 RevTeX pages, 9 figure
Shoot scattering phase function for Scots pine and its effect on canopy reflectance
Spectral and directional reflectance properties of coniferous forests are known to differ from those of broadleaf forests. Many reasons have been proposed for this, including differences in the optical properties of leaves and shoots, the latter being considered the basic unit in radiative transfer modeling of a coniferous canopy. Unfortunately, very little empirical data is available on the spectrodirectional scattering properties of shoots. Here, we present results of angular measurements (using an ASD FieldSpec 3 spectroradiometer mounted on LAGOS) of ten Scots pine shoots in the spectral range 400--2000 nm. The shoots were found to scatter anisotropically with most of the radiation reflected back into the hemisphere where the radiation source was positioned. To describe the measured directional scattering pattern, we propose a phase function consisting of isotropic and Lambertian scattering components. Next, we used the proposed scattering phase function in a Monte Carlo radiative transfer model. Angular reflectance of a modeled horizontally homogeneous shoot canopy has, due to shoot scattering anisotropy, an enhanced “dark spot” as compared with a canopy composed of isotropic scatterers and a quantitatively similar leaf canopy.Peer reviewe
Pseudopeptidic ligands: exploring the self-assembly of isopthaloylbisglycine (H2IBG) and divalent metal ions
No description supplie
Electric-driven Zonal Hydraulics in Non-Road Mobile Machinery
The goal of this research is to apply direct-driven hydraulics (DDH) to the concept of zonal (i.e., locally and operation-focused) hydraulics, which is an essential step in the hybridization and automation of machines. DDH itself aims to combine the best properties of electric and hydraulic technologies and will lead to increased productivity, minimized energy consumption and higher robust performance in both stationary and mobile machines operating in various environments. In the proposed setup, the speed and position control of a double-acting cylinder is implemented directly with an electric motor drive in a closed-loop system without conventional control valves and an oil tank. The selection of the location of the hydraulic accumulator and connection of the external leakage lines will also be part of this study. Simulations and experimental research to study the details of the hydromechanical and electrical realization of the DDH are performed
- …