4,615 research outputs found

    Discourses Of Prejudice In The professions: The Case Of Sign Languages

    Get PDF
    There is no evidence that learning a natural human language is cognitively harmful to children. To the contrary, multilingualism has been argued to be beneficial to all. Nevertheless, many professionals advise the parents of deaf children that their children should not learn a sign language during their early years, despite strong evidence across many research disciplines that sign languages are natural human languages. Their recommendations are based on a combination of misperceptions about (1) the difficulty of learning a sign language, (2) the effects of bilingualism, and particularly bimodalism, (3) the bona fide status of languages that lack a written form, (4) the effects of a sign language on acquiring literacy, (5) the ability of technologies to address the needs of deaf children and (6) the effects that use of a sign language will have on family cohesion. We expose these misperceptions as based in prejudice and urge institutions involved in educating professionals concerned with the healthcare, raising and educating of deaf children to include appropriate information about first language acquisition and the importance of a sign language for deaf children. We further urge such professionals to advise the parents of deaf children properly, which means to strongly advise the introduction of a sign language as soon as hearing loss is detected

    Precise time and frequency intercomparison between NPL, India and PTB, Federal Republic of Germany via satellite symphonie-1

    Get PDF
    A time and frequency intercomparison experiment conducted using Earth stations in New Delhi, India and Raisting, FRG is described. The NPL clock was placed at New Delhi Earth Station and the Raisting Clock was calibrated with PTB/Primary standard via LORAN-C and travelling clocks. The random uncertainity of time comparisons, represented by two sample Allan Variance sigma (30 seconds), was less than 10 nanoseconds. The relative frequency difference between the NPL and Raisting Clocks, SNPL, RAIS, as measured over the 44 days period was found to be -15.7 x 10 to the -13th power. The relative frequency difference between PTB Primary Standard and Raisting Clock, SPTB, RAIS, during this period, was measured to be -22.8 x 10 to the -13th power. The relative frequency difference between NPL clock and PTB Primary Standard, SNPL, PTB, thus, is +7.1 x 10 to the -13th power. The clock rate (UTC, India) of +7.1 + or - 0.5 x 10 to the -13th power, agrees well with that obtained via VLF phase measurements over one year period and with USNO travelling clock time comparisons made in September, 1980

    Phase Diagram of Half Doped Manganites

    Full text link
    An analysis of the properties of half-doped manganites is presented. We build up the phase diagram of the system combining a realistic calculation of the electronic properties and a mean field treatment of the temperature effects. The electronic structure of the manganites are described with a double exchange model with cooperative Jahn-Teller phonons and antiferromagnetic coupling between the MnMn core spins. At zero temperature a variety of electronic phases as ferromagnetic (FM) charge ordered (CO) orbital ordered (OO), CE-CO-OO and FM metallic, are obtained. By raising the temperature the CE-CO-OO phase becomes paramagnetic (PM), but depending on the electron-phonon coupling and the exchange coupling the transition can be direct or trough intermediate states: a FM disorder metallic, a PM-CO-OO or a FM-CO-OO. We also discus the nature of the high temperature PM phase in the regime of finite electron phonon coupling. In this regime half of the oxygen octahedra surrounding the MnMn ions are distorted. In the weak coupling regime the octahedra are slightly deformed and only trap a small amount of electronic charge, rendering the system metallic consequentially. However in the strong coupling regime the octahedra are strongly distorted, the charge is fully localized in polarons and the system is insulator.Comment: 10 pagses, 9 figures include

    Nonuniversal Effects in the Homogeneous Bose Gas

    Full text link
    Effective field theory predicts that the leading nonuniversal effects in the homogeneous Bose gas arise from the effective range for S-wave scattering and from an effective three-body contact interaction. We calculate the leading nonuniversal contributions to the energy density and condensate fraction and compare the predictions with results from diffusion Monte Carlo calculations by Giorgini, Boronat, and Casulleras. We give a crude determination of the strength of the three-body contact interaction for various model potentials. Accurate determinations could be obtained from diffusion Monte Carlo calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te

    Very weak electron-phonon coupling and strong strain coupling in manganites

    Get PDF
    The coupling of the manganite stripe phase to the lattice and to strain has been investigated via transmission electron microscopy studies of polycrystalline and thin film manganites. In polycrystalline \PCMOfiftwo a lockin to q/a=0.5q/a^*=0.5 in a sample with x>0.5x>0.5 has been observed for the first time. Such a lockin has been predicted as a key part of the Landau CDW theory of the stripe phase. Thus it is possible to constrain the size of the electron-phonon coupling in the CDW Landau theory to between 0.04% and 0.05% of the electron-electron coupling term. In the thin film samples, films of the same thickness grown on two different substrates exhibited different wavevectors. The different strains present in the films on the two substrates can be related to the wavevector observed via Landau theory. It is demonstrated that the the elastic term which favours an incommensurate modulation has a similar size to the coupling between the strain and the wavevector, meaning that the coupling of strain to the superlattice is unexpectedly strong.Comment: 6 pages, 7 figure

    The structure of intercalated water in superconducting Na0.35_{0.35}CoO2_{2}\cdot1.37D2_{2}O: Implications for the superconducting phase diagram

    Full text link
    We have used electron and neutron powder diffraction to elucidate the structural properties of superconducting \NaD. Our measurements show that our superconducting sample exhbits a number of supercells ranging from 1/3a{1/3}a^{*} to 1/15a{1/15}a^{*}, but the most predominant one, observed also in the neutron data, is a double hexagonal cell with dimensions \dhx. Rietveld analysis reveals that \deut\space is inserted between CoO2_{2} sheets as to form a layered network of NaO6_{6} triangular prisms. Our model removes the need to invoke a 5K superconducting point compound and suggests that a solid solution of Na is possible within a constant amount of water yy.Comment: 4 pages, 3 figure
    corecore