205 research outputs found

    Simulating the Hot X-ray Emitting Gas in Elliptical Galaxies

    Get PDF
    We study the chemo-dynamical evolution of elliptical galaxies and their hot X-ray emitting gas using high-resolution cosmological simulations. Our Tree N-body/SPH code includes a self-consistent treatment of radiative cooling, star formation, supernovae feedback, and chemical enrichment. We present a series of LCDM cosmological simulations which trace the spatial and temporal evolution of heavy element abundance patterns in both the stellar and gas components of galaxies. X-ray spectra of the hot gas are constructed via the use of the vmekal plasma model, and analysed using XSPEC with the XMM EPN response function. Simulation end-products are quantitatively compared with the observational data in both the X-ray and optical regime. We find that radiative cooling is important to interpret the observed X-ray luminosity, temperature, and metallicity of the interstellar medium of elliptical galaxies. However, this cooled gas also leads to excessive star formation at low redshift, and therefore results in underlying galactic stellar populations which are too blue with respect to observations.Comment: 6 pages, 3 figures, to appear in the proceedings of "The IGM/Galaxy Connection - The Distribution of Baryons at z=0", ed. M. Putman & J. Rosenberg; High resolution version is available at http://astronomy.swin.edu.au/staff/dkawata/research/papers.htm

    High Energy Neutrinos from Quasars

    Get PDF
    We review and clarify the assumptions of our basic model for neutrino production in the cores of quasars, as well as those modifications to the model subsequently made by other workers. We also present a revised estimate of the neutrino background flux and spectrum obtained using more recent empirical studies of quasars and their evolution. We compare our results with other thoeretical calculations and experimental upper limits on the AGN neutrino background flux. We also estimate possible neutrino fluxes from the jets of blazars detected recently by the EGRET experiment on the Compton Gamma Ray Observatory. We discuss the theoretical implications of these estimates.Comment: 14 pg., ps file (includes figures), To be published in Space Science Review

    The evolution of galaxies from primeval irregulars to present-day ellipticals

    Full text link
    The current understanding of galaxy formation is that it proceeds in a 'bottom up' way, with the formation of small clumps of gas and stars that merge hierarchically until giant galaxies are built up. The baryonic gas loses the thermal energy by radiative cooling and falls towards the centres of the new galaxies, while supernovae (SNe) blow gas out. Any realistic model therefore requires a proper treatment of these processes, but hitherto this has been far from satisfactory. Here we report an ultra-high-resolution simulation that follows evolution from the earliest stages of galaxy formation through the period of dynamical relaxation. The bubble structures of gas revealed in our simulation (<3×108< 3\times10^8 years) resemble closely the high-redshift Lyman α\alpha emitters (LAEs). After 10910^9 years these bodies are dominated by stellar continuum radiation and look like the Lyman break galaxies (LBGs) known as the high-redshift star-forming galaxies at which point the abundance of elements heavier than helium ("metallicity") appears to be solar. After 1.3×10101.3\times10^{10} years, these galaxies resemble present-day ellipticals.Comment: 27 pages and 4 figures, Supplementary Information included, movie available on http://www.isc.senshu-u.ac.jp/~thj0613/natur

    Lost & Found Dark Matter in Elliptical Galaxies

    Full text link
    There is strong evidence that the mass in the Universe is dominated by dark matter, which exerts gravitational attraction but whose exact nature is unknown. In particular, all galaxies are believed to be embedded in massive haloes of dark matter. This view has recently been challenged by surprisingly low random stellar velocities in the outskirts of ordinary elliptical galaxies, which were interpreted as indicating a lack of dark matter (Mendez et al. 2001; Romanowsky et al. 2003). Here we show that the low velocities are in fact compatible with galaxy formation in dark-matter haloes. Using numerical simulations of disc-galaxy mergers, we find that the stellar orbits in the outer regions of the resulting ellipticals are very elongated. These stars were torn by tidal forces from their original galaxies during the first close passage and put on outgoing trajectories. The elongated orbits, combined with the steeply falling density profile of the observed tracers, explain the observed low velocities even in the presence of large amounts of dark matter. Projection effects when viewing a triaxial elliptical can lead to even lower observed velocities along certain lines of sight.Comment: Letter to Nature, 13+15 pages, 2+11 figures, improved text, extended Supplementary Information adde

    Parents' psychological adjustment in families of children with Spina Bifida: a meta-analysis

    Get PDF
    BACKGROUND: Spina Bifida (SB) is the second most common birth defect worldwide. Since the chances of survival in children with severe SB-forms have increased, medical care has shifted its emphasis from life-saving interventions to fostering the quality of life for these children and their families. Little is known, however, about the impact of SB on family adjustment. Reviewers have struggled to synthesize the few contradictory studies available. In this systematic review a new attempt was made to summarize the findings by using meta-analysis and by delimiting the scope of review to one concept of family adjustment: Parents' psychological adjustment. The questions addressed were: (a) do parents of children with SB have more psychological distress than controls? (b) do mothers and fathers differ? and (c) which factors correlate with variations in psychological adjustment? METHODS: PsycInfo, Medline, and reference lists were scanned. Thirty-three relevant studies were identified of which 15 were eligible for meta-analysis. RESULTS: SB had a negative medium-large effect on parents' psychological adjustment. The effect was more heterogeneous for mothers than for fathers. In the reviewed studies child factors (age, conduct problems, emotional problems, and mental retardation), parent factors (SES, hope, appraised stress, coping, and parenting competence), family factors (family income, partner relationship, and family climate), and environmental factors (social support) were found to be associated with variations in parents' psychological adjustment. CONCLUSION: Meta-analysis proved to be helpful in organizing studies. Clinical implications indicate a need to be especially alert to psychological suffering in mothers of children with SB. Future research should increase sample sizes through multi-center collaborations

    Clusters of galaxies : observational properties of the diffuse radio emission

    Get PDF
    Clusters of galaxies, as the largest virialized systems in the Universe, are ideal laboratories to study the formation and evolution of cosmic structures...(abridged)... Most of the detailed knowledge of galaxy clusters has been obtained in recent years from the study of ICM through X-ray Astronomy. At the same time, radio observations have proved that the ICM is mixed with non-thermal components, i.e. highly relativistic particles and large-scale magnetic fields, detected through their synchrotron emission. The knowledge of the properties of these non-thermal ICM components has increased significantly, owing to sensitive radio images and to the development of theoretical models. Diffuse synchrotron radio emission in the central and peripheral cluster regions has been found in many clusters. Moreover large-scale magnetic fields appear to be present in all galaxy clusters, as derived from Rotation Measure (RM) studies. Non-thermal components are linked to the cluster X-ray properties, and to the cluster evolutionary stage, and are crucial for a comprehensive physical description of the intracluster medium. They play an important role in the cluster formation and evolution. We review here the observational properties of diffuse non-thermal sources detected in galaxy clusters: halos, relics and mini-halos. We discuss their classification and properties. We report published results up to date and obtain and discuss statistical properties. We present the properties of large-scale magnetic fields in clusters and in even larger structures: filaments connecting galaxy clusters. We summarize the current models of the origin of these cluster components, and outline the improvements that are expected in this area from future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics Review. 58 pages, 26 figure

    A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-coding small RNAs play critical roles in various cellular processes in a wide spectrum of eukaryotic organisms. Their responses to abiotic stress have become a popular topic of economic and scientific importance in biological research. Several studies in recent years have reported a small number of non-coding small RNAs that map to chloroplast genomes. However, it remains uncertain whether small RNAs are generated from chloroplast genome and how they respond to environmental stress, such as high temperature. Chinese cabbage is an important vegetable crop, and heat stress usually causes great losses in yields and quality. Under heat stress, the leaves become etiolated due to the disruption and disassembly of chloroplasts. In an attempt to determine the heat-responsive small RNAs in chloroplast genome of Chinese cabbage, we carried out deep sequencing, using heat-treated samples, and analysed the proportion of small RNAs that were matched to chloroplast genome.</p> <p>Results</p> <p>Deep sequencing provided evidence that a novel subset of small RNAs were derived from the chloroplast genome of Chinese cabbage. The chloroplast small RNAs (csRNAs) include those derived from mRNA, rRNA, tRNA and intergenic RNA. The rRNA-derived csRNAs were preferentially located at the 3'-ends of the rRNAs, while the tRNA-derived csRNAs were mainly located at 5'-termini of the tRNAs. After heat treatment, the abundance of csRNAs decreased in seedlings, except those of 24 nt in length. The novel heat-responsive csRNAs and their locations in the chloroplast were verified by Northern blotting. The regulation of some csRNAs to the putative target genes were identified by real-time PCR. Our results reveal that high temperature suppresses the production of some csRNAs, which have potential roles in transcriptional or post-transcriptional regulation.</p> <p>Conclusions</p> <p>In addition to nucleus, the chloroplast is another important organelle that generates a number of small RNAs. Many members of csRNA families are highly sensitive to heat stress. Some csRNAs respond to heat stress by silencing target genes. We suggest that proper temperature is important for production of chloroplast small RNAs, which are associated with plant resistance to abiotic stress.</p

    Hot gas flows on global and nuclear galactic scales

    Get PDF
    Since its discovery as an X-ray source with the Einstein Observatory, the hot X-ray emitting interstellar medium of early-type galaxies has been studied intensively, with observations of improving quality, and with extensive modeling by means of numerical simulations. The main features of the hot gas evolution are outlined here, focussing on the mass and energy input rates, the relationship between the hot gas flow and the main properties characterizing its host galaxy, the flow behavior on the nuclear and global galactic scales, and the sensitivity of the flow to the shape of the stellar mass distribution and the mean rotation velocity of the stars.Comment: 22 pages. Abbreviated version of chapter 2 of the book "Hot Interstellar Matter in Elliptical Galaxies", Springer 201

    Dynamics of Co-Transcriptional Pre-mRNA Folding Influences the Induction of Dystrophin Exon Skipping by Antisense Oligonucleotides

    Get PDF
    Antisense oligonucleotides (AONs) mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a “window of analysis” that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered “engaged” if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency) of 94% of 176 previously reported AONs. Four novel insights are inferred: (1) the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2) engaged nucleotides at 3′ or 5′ ends of the target site attenuate AON performance more than at other sites; (3) the performance of longer AONs is less attenuated by engaged nucleotides at 3′ or 5′ ends of the target site compared to shorter AONs; (4) engaged nucleotides at 3′ end of a short target site attenuates AON efficiency more than at 5′ end
    corecore