18 research outputs found

    Transdisciplinary collaboration in architecture: Integrating microalgae biotechnologies for human and non-human perspectives

    Get PDF
    This article investigates the role of architectural research in addressing the current ecological, geopolitical, and socioeconomic challenges by exploring the potential of symbiotic ecosystems, particularly microorganisms such as microalgae, in architectural and design applications. Microalgae biotechnologies have the potential to offer a wide range of applications in architecture and design, encompassing small-scale objects, living systems on building exteriors, as well as urban and rural scenarios, thereby allowing for systematic research. When using these biotechnologies in architectural designs, it is crucial to consider maintenance requirements, environmental impacts, and the potential for enhancing public spaces and society across various dimensions in both short-term and long-term perspectives, and potential environmental impacts before implementing microalgae-based systems in real-life scenarios. This study de-scribes a collection of interdisciplinary projects and research that involve microbiology, architecture, and design and proposes various experimental scenarios concerning the integration of both human and non-human perspectives. Through collaborative aca-demic efforts, these projects demonstrate the potential for combining microalgae culti-vation with architectural applications. The projects include Photosynthetic Landscape, a modular photobioreactor system, Synthesizing/Distancing which addresses coexist-ence in global epidemics, Biotopia, a permanent interior installation incorporating microalgae, Exchange Instruments, a semi-closed cultivation system, and Cultivated Environment, a small-scale microalgae cultivation apparatus. The article highlights the implication of controlled environments, maintenance, and interdisciplinary coopera-tion while showcasing the potential for these systems

    Cold-adapted culturing of the microalga Monoraphidium sp. in thin-layer raceway pond for biomass production

    Get PDF
    Three cultivation regimes were tested in cold-adapted cultures of the green microalga Monoraphidium in an outdoor thin-layer raceway pond: cultivation under sunlight; its combination with continuous supplementary illumination; and nitrogen depletion using both light sources. The highest volumetric and areal productivity, 0.16 g L−1 d−1 and 3.22 g m−2 d−1, respectively corresponding to the specific growth rate μ of 0.191 d−1 were achieved when sunlight was combined with supplementary illumination. The maximum total fatty acid content, 20.29 % of DW, rich in oleic acid, 54 % of total fatty acid content, was achieved under nitrogen depletion stress. An outstanding amount of lutein, 26.39 mg lutein g−1 DW, was detected grown under sunlight in the first trial. From the harvested and fermented biomass in the second trial 236 mLN g−1oTS of methane was generated

    Xantofylový cyklus u rostlin a zelených řas: jeho role ve fotosyntetickém aparátu

    No full text
    Light-induced conversion of violaxanthin to zeaxanthin, the so-called xanthophyll cycle serves as a major, short-term light acclimation mechanism in higher plants. The role of xanthophylls in thermal dissipation of surplus excitation energy was deduced from the linear relationship between zeaxanthin formation and the magnitude of nonphotochemical quenching. We have studied the role of the xanthophyll cycle in the adaptation of several species of green algae (Chlorella, Scenedesmus, Haematococcus, Chlorococcum, Spongiochloris) to high irradiance. The xanthophyll cycle was found functional in all tested organisms; however its contribution to nonphotochemical quenching is not as significant as in higher plants. We assume that algae rely on other dissipation mechanism(s), which operate along with the xanthophyll cycle-dependent quenchin

    Supplementation with Sodium Selenite and Selenium-Enriched Microalgae Biomass Show Varying Effects on Blood Enzymes Activities, Antioxidant Response, and Accumulation in Common Barbel (Barbus barbus)

    No full text
    Yearling common barbel (Barbus barbus L.) were fed four purified casein-based diets for 6 weeks in outdoor cages. Besides control diet, these were supplemented with 0.3 mg kg−1 dw selenium (Se) from sodium selenite, or 0.3 and 1.0 mg kg−1 from Se-enriched microalgae biomass (Chlorella), a previously untested Se source for fish. Fish mortality, growth, Se accumulation in muscle and liver, and activity of selected enzymes in blood plasma, muscle, liver, and intestine were evaluated. There was no mortality, and no differences in fish growth, among groups. Se concentrations in muscle and liver, activity of alanine aminotransferase and creatine kinase in blood plasma, glutathione reductase (GR) in muscle, and GR and catalase in muscle and liver suggested that selenium from Se-enriched Chlorella is more readily accumulated and biologically active while being less toxic than sodium selenite

    Digestate as sustainable nutrient source for microalgae - challenges and prospects

    No full text
    The interest in microalgae products has been increasing, and therefore the cultivation industry is growing steadily. To reduce the environmental impact and production costs arising from nutrients, research needs to find alternatives to the currently used artificial nutrients. Microalgae cultivation in anaerobic effluents (more specifically, digestate) represents a promising strategy for increasing sustainability and obtaining valuable products. However, digestate must be processed prior to its use as nutrient source. Depending on its composition, different methods are suitable for removing solids (e.g., centrifugation) and adjusting nutrient concentrations and ratios (e.g., dilution, ammonia stripping). Moreover, the resulting cultivation medium must be light-permeable. Various studies show that growth rates comparable to those in artificial media can be achieved when proper digestate treatment is used. The necessary steps for obtaining a suitable cultivation medium also depend on the microalgae species to be cultivated. Concerning the application of the biomass, legal aspects and impurities originating from digestate must be considered. Furthermore, microalgae species and their application fields are essential criteria when selecting downstream processing methods (harvest, disintegration, dehydration, product purification). Microalgae grown on digestate can be used to produce various products (e.g., bioenergy, animal feed, bioplastics, and biofertilizers). This review gives insight into the origin and composition of digestate, processing options to meet requirements for microalgae cultivation and challenges regarding downstream processing and products

    Digestate as Sustainable Nutrient Source for Microalgae—Challenges and Prospects

    No full text
    The interest in microalgae products has been increasing, and therefore the cultivation industry is growing steadily. To reduce the environmental impact and production costs arising from nutrients, research needs to find alternatives to the currently used artificial nutrients. Microalgae cultivation in anaerobic effluents (more specifically, digestate) represents a promising strategy for increasing sustainability and obtaining valuable products. However, digestate must be processed prior to its use as nutrient source. Depending on its composition, different methods are suitable for removing solids (e.g., centrifugation) and adjusting nutrient concentrations and ratios (e.g., dilution, ammonia stripping). Moreover, the resulting cultivation medium must be light-permeable. Various studies show that growth rates comparable to those in artificial media can be achieved when proper digestate treatment is used. The necessary steps for obtaining a suitable cultivation medium also depend on the microalgae species to be cultivated. Concerning the application of the biomass, legal aspects and impurities originating from digestate must be considered. Furthermore, microalgae species and their application fields are essential criteria when selecting downstream processing methods (harvest, disintegration, dehydration, product purification). Microalgae grown on digestate can be used to produce various products (e.g., bioenergy, animal feed, bioplastics, and biofertilizers). This review gives insight into the origin and composition of digestate, processing options to meet requirements for microalgae cultivation and challenges regarding downstream processing and products

    Sustained photobiological hydrogen production by Chlorella vulgaris without nutrient starvation

    No full text
    This article describes the ability of the Chlorella vulgaris BEIJ strain G-120 to produce hydrogen (H2) via both direct and indirect pathways without the use of nutrient starvation. Photobiological H2 production reached a maximum rate of 12 mL H2 L1 h1 , corresponding to a light conversion efficiency (light to H2) of 7.7% (average 3.2%, over the 8-day period) of PAR, (photosynthetically active irradiance). Cells presented a maximum in vivo hydrogenase activity of 25.5 ± 0.2 nmoles H2 mgChl1 h1 and the calculated in vitro hydrogenase activity was 830 ± 61 nmoles H2 mgChl1 h1 . The strain is able to grow either heterotrophically or photo autotrophically. The total output of 896 mL of H2 was attained for illuminated culture and 405 mL for dark cultures. The average H2 production rate was 4.98 mL L1 h1 for the illuminated culture and 2.08 mL L1 h1 for the one maintained in the dark.Universidad de Costa Rica/[808-C0-107]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR

    Variables Governing Photosynthesis and Growth in Microalgae Mass Cultures

    No full text
    Since the 1950s, microalgae have been grown commercially in man-made cultivation units and used for biomass production as a source of food and feed supplements, pharmaceuticals, cosmetics and lately biofuels, as well as a means for wastewater treatment and mitigation of atmospheric CO2 build-up. In this work, photosynthesis and growth affecting variables—light intensity, pH, CO2/O2 exchange, nutrient supply, culture turbulence, light/dark cell cycling, biomass density and culture depth (light path)—are reviewed as concerns in microalgae mass cultures. Various photosynthesis monitoring techniques were employed to study photosynthetic performance to optimize the growth of microalgae strains in outdoor cultivation units. The most operative and reliable techniques appeared to be fast-response ones based on chlorophyll fluorescence and oxygen production monitoring, which provide analogous results
    corecore