224 research outputs found

    Fourth Lepton Family is Natural in Technicolor

    Get PDF
    Imagine to discover a new fourth family of leptons at the Large Hadron Collider (LHC) but no signs of an associated fourth family of quarks. What would that imply? An intriguing possibility is that the new fermions needed to compensate for the new leptons gauge anomalies simultaneously address the big hierarchy problem of the Standard Model. A natural way to accomplish such a scenario is to have the Higgs itself be composite of these new fermions. This is the setup we are going to investigate in this paper using as a template Minimal Walking Technicolor. We analyze a general heavy neutrino mass structure with and without mixing with the Standard Model families. We also analyze the LHC potential to observe the fourth lepton family in tandem with the new composite Higgs dynamics. We finally introduce a model uniting the fourth lepton family and the technifermion sector at higher energies.Comment: 39 ReVTeX pages, 16 figure

    Looking for a charge asymmetry in cosmic rays

    Full text link
    We combine the data from PAMELA and FERMI-LAT cosmic ray experiments by introducing a simple sum rule. This allows to investigate whether the lepton excess observed by these experiments is charge symmetric or not. We also show how the data can be used to predict the positron fraction at energies yet to be explored by the AMS-02 experiment.Comment: Contribution to the proceedings of DISCRETE 2010, 5 pages, 2 figure

    Cosmic Sum Rules

    Get PDF
    We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how they can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models.Comment: RevTeX, 4 pages, 6 figures, two-columns. Final version to match the published version in Brief Reports section of Phys. Rev. D. We stress that this is the first paper about charge asymmetries in cosmic ray

    AGE INFLUENCED CATTLE SERUM ANTIGEN DETECTED BY AUTOANTIBODIES

    Get PDF

    Factors affecting VBAC success at a tertiary level Hospital in Pretoria, South Africa

    Get PDF
    There is growing concern about rising global caesarean delivery (CD) rates. One of the strategies to overcome this problem is to reduce primary caesarean section. A trial of labour following a previous CD is another option that may be explored. AIM The aim of the study was to determine the success rate and risk factors for women attempting vaginal birth after a prior caesarean delivery (VBAC). METHODS This was a retrospective analysis from 2013-2018 of women attempting a vaginal birth after caesarean section at a tertiary level hospital in Pretoria, South Africa. RESULTS The VBAC success rate was 36%. Factors that were associated with a successful VBAC were a third pregnancy, previous successful VBAC (61%), presentation in the active phase of labour and a neonatal birthweight of less than 3kg. CONCLUSION Pregnant women with a CD in a prior pregnancy should be appropriately counselled regarding delivery options. Risks and benefi ts of elective repeat caesarean delivery versus trial of labour should be clearly explained to expectant mothers.http://reference.sabinet.co.za/sa_epublication/medoghttps://journals.co.za/journal/medogam2022Obstetrics and Gynaecolog

    Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model

    Get PDF
    Euro-Mediterranean Centre on Climate Change coupled climate model (CMCC-CM2) represents the new family of the global coupled climate models developed and used at CMCC. It is based on the atmospheric, land and sea ice components from the Community Earth System Model coupled with the global ocean model Nucleus for European Modeling of the Ocean. This study documents the model components, the coupling strategy, particularly for the oceanic, atmospheric, and sea ice components, and the overall model ability in reproducing the observed mean climate and main patterns of interannual variability. As a first step toward a more comprehensive, process-oriented, validation of the model, this work analyzes a 200-year simulation performed under constant forcing corresponding to present-day climate conditions. In terms of mean climate, the model is able to realistically reproduce the main patterns of temperature, precipitation, and winds. Specifically, we report improvements in the representation of the sea surface temperature with respect to the previous version of the model. In terms of mean atmospheric circulation features, we notice a realistic simulation of upper tropospheric winds and midtroposphere geopotential eddies. The oceanic heat transport and the Atlantic meridional overturning circulation satisfactorily compare with present-day observations and estimates from global ocean reanalyses. The sea ice patterns and associated seasonal variations are realistically reproduced in both hemispheres, with a better skill in winter. Main weaknesses of the simulated climate are related with the precipitation patterns, specifically in the tropical regions with large dry biases over the Amazon basin. Similarly, the seasonal precipitation associated with the monsoons, mostly over Asia, is weaker than observed. The main patterns of interannual variability in terms of dominant empirical orthogonal functions are faithfully reproduced, mostly in the Northern Hemisphere winter. In the tropics the main teleconnection patterns associated with El Nino-Southern Oscillation and with the Indian Ocean Dipole are also in good agreement with observations

    Repressing Anarchy in Neutrino Mass Textures

    Get PDF
    The recent results that θ13\theta_{13} is relatively large, of the order of the previous upper bound, and the indications of a sizable deviation of θ23\theta_{23} from the maximal value are in agreement with the predictions of Anarchy in the lepton sector. The quark and charged lepton hierarchies can then be reproduced in a SU(5) GUT context by attributing non-vanishing U(1)FNU(1)_{FN} charges, different for each family, only to the SU(5) tenplet states. The fact that the observed mass hierarchies are stronger for up quarks than for down quarks and charged leptons supports this idea. As discussed in the past, in the flexible context of SU(5)U(1)FNSU(5)\otimes U(1)_{FN}, different patterns of charges can be adopted going from Anarchy to various types of hierarchy. We revisit this approach by also considering new models and we compare all versions to the present data. As a result we confirm that, by relaxing the extreme ansatz of equal U(1)FNU(1)_{FN} charges for all SU(5) pentaplets and singlets, better agreement with the data than for Anarchy is obtained without increasing the model complexity. We also present the distributions obtained in the different models for the Dirac CP-violating phase. Finally we discuss the relative merits of these simple models.Comment: v1: 12 pages, 3 figures; v2: 13 pages, 3 figures, text improved, matches version accepted for publication; v3: submitted to add an acknowledgment to a networ

    Minimal Scenarios for Leptogenesis and CP Violation

    Full text link
    The relation between leptogenesis and CP violation at low energies is analyzed in detail in the framework of the minimal seesaw mechanism. Working, without loss of generality, in a weak basis where both the charged lepton and the right-handed Majorana mass matrices are diagonal and real, we consider a convenient generic parametrization of the Dirac neutrino Yukawa coupling matrix and identify the necessary condition which has to be satisfied in order to establish a direct link between leptogenesis and CP violation at low energies. In the context of the LMA solution of the solar neutrino problem, we present minimal scenarios which allow for the full determination of the cosmological baryon asymmetry and the strength of CP violation in neutrino oscillations. Some specific realizations of these minimal scenarios are considered. The question of the relative sign between the baryon asymmetry and CP violation at low energies is also discussed.Comment: 36 pages, 5 figures; minor corrections and references updated. Final version to appear in Phys. Rev.

    Testing new physics with the electron g-2

    Get PDF
    We argue that the anomalous magnetic moment of the electron (a_e) can be used to probe new physics. We show that the present bound on new-physics contributions to a_e is 8*10^-13, but the sensitivity can be improved by about an order of magnitude with new measurements of a_e and more refined determinations of alpha in atomic-physics experiments. Tests on new-physics effects in a_e can play a crucial role in the interpretation of the observed discrepancy in the anomalous magnetic moment of the muon (a_mu). In a large class of models, new contributions to magnetic moments scale with the square of lepton masses and thus the anomaly in a_mu suggests a new-physics effect in a_e of (0.7 +- 0.2)*10^-13. We also present examples of new-physics theories in which this scaling is violated and larger effects in a_e are expected. In such models the value of a_e is correlated with specific predictions for processes with violation of lepton number or lepton universality, and with the electric dipole moment of the electron.Comment: 34 pages, 7 figures. Minor changes and references adde

    Models of Neutrino Masses: Anarchy versus Hierarchy

    Get PDF
    We present a quantitative study of the ability of models with different levels of hierarchy to reproduce the solar neutrino solutions, in particular the LA solution. As a flexible testing ground we consider models based on SU(5)xU(1)_F. In this context, we have made statistical simulations of models with different patterns from anarchy to various types of hierachy: normal hierarchical models with and without automatic suppression of the 23 (sub)determinant and inverse hierarchy models. We find that, not only for the LOW or VO solutions, but even in the LA case, the hierarchical models have a significantly better success rate than those based on anarchy. The normal hierachy and the inverse hierarchy models have comparable performances in models with see-saw dominance, while the inverse hierarchy models are particularly good in the no see-saw versions. As a possible distinction between these categories of models, the inverse hierarchy models favour a maximal solar mixing angle and their rate of success drops dramatically as the mixing angle decreases, while normal hierarchy models are far more stable in this respect.Comment: v1: 28 pages, 12 figures; v2: 34 pages, 14 figures, updated previous analysis with the inclusion of recent SNO result
    corecore