215 research outputs found

    AXL Promotes Metformin-Induced Apoptosis Through Mediation of Autophagy by Activating ROS-AMPK-ULK1 Signaling in Human Esophageal Adenocarcinoma

    Get PDF
    AXL receptor tyrosine kinase promotes an invasive phenotype and chemotherapy resistance in esophageal adenocarcinoma (EAC). AXL has been implicated in the regulation of autophagy, but the underlying molecular mechanism remains poorly understood. Herein, we investigate the mechanistic role of AXL in autophagy as well as metformin-induced effects on the growth and survival of EAC. We demonstrate that AXL mediates autophagic flux through activation of AMPK-ULK1 signaling in a reactive oxygen species (ROS)-dependent mechanism by glucose starvation. AXL positively regulates basal cellular ROS levels without significantly affecting mitochondrial ROS production in EAC cells. Pharmacological inhibition of cellular ROS using Trolox abrogates glucose starvation-induced AMPK signaling and autophagy. We demonstrate that AXL expression is required for metformin-induced apoptosis in EAC cells in vitro. The apoptosis induction by metformin is markedly attenuated by inhibition of autophagy through genetic silencing of Beclin1 or ATG7 autophagy mediators, thereby confirming the requirement of intact autophagy for enhancing metformin-induced apoptosis in EAC cells. Our data indicate that metformin-induced autophagy displays a pro-apoptotic function in EAC cells. We show that the metformin-induced suppression of tumor growth in vivo is highly dependent on AXL expression in a tumor xenograft mouse model of EAC. We demonstrate that AXL promotes metformin-induced apoptosis through activation of autophagy in EAC. AXL may be a valuable biomarker to identify tumors that are sensitive to metformin. Therefore, AXL expression could inform the selection of patients for future clinical trials to evaluate the therapeutic efficacy of metformin in EAC

    Communication Research

    Get PDF
    Contains reports on seven research projects.Rockefeller FoundationCarnegie Foundatio

    HIV infection and sexual risk among men who have sex with men and women (MSMW): A systematic review and meta-analysis

    Get PDF
    Objectives: To estimate the number of men who have sex with men and women who are HIV-positive in the United States, and to compare HIV prevalence rates between men who have sex with men and women, men who have sex with men only, and men who have sex with women exclusively. Methods: Following PRISMA guidelines, we conducted a systematic review and meta-analysis of reports referencing HIV prevalence and men who have sex with men and women. We searched PubMed and Ovid PsycINFO for peer-reviewed, U.S.-based articles reporting on HIV prevalence among men who have sex with men and women. We conducted event rate, effect size, moderation and sensitivity analyses. Results: We estimate that 1.0% of U.S. males are bisexually-behaving, and that 121,800 bisexually-behaving men are HIV-positive. Men who have sex with men and women are less than half as likely to be HIV-positive as men who have sex with men only (16.9% vs. 33.3%; OR = 0.41, 95% CI: 0.31, 0.54), but more than five times as likely to be HIV-positive as men who have sex with women exclusively (18.3% vs. 3.5%; OR = 5.71, 95% CI: 3.47, 9.39). They are less likely to engage in unprotected receptive anal intercourse than men who have sex with men only (15.9% vs. 35.0%; OR = 0.36, 95% CI: 0.28, 0.46). Men who have sex with men and women in samples with high racial/ethnic minority proportions had significantly higher HIV prevalence than their counterparts in low racial/ethnic minority samples. Conclusions: This represents the first meta-analysis of HIV prevalence in the U.S. between men who have sex with men and women and men who have sex with men only. Data collection, research, and HIV prevention and care delivery specifically tailored to men who have sex with men and women are necessary to better quantify and ameliorate this population's HIV burden. © 2014 Friedman et al

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas
    corecore