3,784 research outputs found
A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development: Executive summary
A cross impact model of the U.S. telecommunications system was developed. For this model, it was necessary to prepare forecasts of the major segments of the telecommunications system, such as satellites, telephone, TV, CATV, radio broadcasting, etc. In addition, forecasts were prepared of the traffic generated by a variety of new or expanded services, such as electronic check clearing and point of sale electronic funds transfer. Finally, the interactions among the forecasts were estimated (the cross impacts). Both the forecasts and the cross impacts were used as inputs to the cross impact model, which could then be used to stimulate the future growth of the entire U.S. telecommunications system. By varying the inputs, technology changes or policy decisions with regard to any segment of the system could be evaluated in the context of the remainder of the system. To illustrate the operation of the model, a specific study was made of the deployment of fiber optics, throughout the telecommunications system
A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development, volume 2
The appendices for the cross impact methodology are presented. These include: user's guide, telecommunication events, cross impacts, projection of historical trends, and projection of trends in satellite communications
A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development, volume 1
A cross impact model of the U.S. telecommunications system was developed. It was necessary to prepare forecasts of the major segments of the telecommunications system, such as satellites, telephone, TV, CATV, radio broadcasting, etc. In addition, forecasts were prepared of the traffic generated by a variety of new or expanded services, such as electronic check clearing and point of sale electronic funds transfer. Finally, the interactions among the forecasts were estimated (the cross impact). Both the forecasts and the cross impacts were used as inputs to the cross impact model, which could then be used to stimulate the future growth of the entire U.S. telecommunications system. By varying the inputs, technology changes or policy decisions with regard to any segment of the system could be evaluated in the context of the remainder of the system. To illustrate the operation of the model, a specific study was made of the deployment of fiber optics throughout the telecommunications system
Apollo wind tunnel testing program - Historical development of general configurations
Apollo wind tunnel test program and configuration design development
Recommended from our members
Pre-existing invasive fungal infection is not a contraindication for allogeneic HSCT for patients with hematologic malignancies: a CIBMTR study.
Patients with prior invasive fungal infection (IFI) increasingly proceed to allogeneic hematopoietic cell transplantation (HSCT). However, little is known about the impact of prior IFI on survival. Patients with pre-transplant IFI (cases; n=825) were compared with controls (n=10247). A subset analysis assessed outcomes in leukemia patients pre- and post 2001. Cases were older with lower performance status (KPS), more advanced disease, higher likelihood of AML and having received cord blood, reduced intensity conditioning, mold-active fungal prophylaxis and more recently transplanted. Aspergillus spp. and Candida spp. were the most commonly identified pathogens. 68% of patients had primarily pulmonary involvement. Univariate and multivariable analysis demonstrated inferior PFS and overall survival (OS) for cases. At 2 years, cases had higher mortality and shorter PFS with significant increases in non-relapse mortality (NRM) but no difference in relapse. One year probability of post-HSCT IFI was 24% (cases) and 17% (control, P<0.001). The predominant cause of death was underlying malignancy; infectious death was higher in cases (13% vs 9%). In the subset analysis, patients transplanted before 2001 had increased NRM with inferior OS and PFS compared with later cases. Pre-transplant IFI is associated with lower PFS and OS after allogeneic HSCT but significant survivorship was observed. Consequently, pre-transplant IFI should not be a contraindication to allogeneic HSCT in otherwise suitable candidates. Documented pre-transplant IFI is associated with lower PFS and OS after allogeneic HSCT. However, mortality post transplant is more influenced by advanced disease status than previous IFI. Pre-transplant IFI does not appear to be a contraindication to allogeneic HSCT
Blocking spinal CCR2 with AZ889 reversed hyperalgesia in a model of neuropathic pain
<p>Abstract</p> <p>Background</p> <p>The CCR2/CCL2 system has been identified as a regulator in the pathogenesis of neuropathy-induced pain. However, CCR2 target validation in analgesia and the mechanism underlying antinociception produced by CCR2 antagonists remains poorly understood. In this study, <it>in vitro </it>and <it>in vivo </it>pharmacological approaches using a novel CCR2 antagonist, AZ889, strengthened the hypothesis of a CCR2 contribution to neuropathic pain and provided confidence over the possibilities to treat neuropathic pain with CCR2 antagonists.</p> <p>Results</p> <p>We provided evidence that dorsal root ganglia (DRG) cells harvested from CCI animals responded to stimulation by CCL2 with a concentration-dependent calcium rise involving PLC-dependent internal stores. This response was associated with an increase in evoked neuronal action potentials suggesting these cells were sensitive to CCR2 signalling. Importantly, treatment with AZ889 abolished CCL2-evoked excitation confirming that this activity is CCR2-mediated. Neuronal and non-neuronal cells in the spinal cord were also excited by CCL2 applications indicating an important role of spinal CCR2 in neuropathic pain. We next showed that in vivo spinal intrathecal injection of AZ889 produced dose-dependent analgesia in CCI rats. Additionally, application of AZ889 to the exposed spinal cord inhibited evoked neuronal activity and confirmed that CCR2-mediated analgesia involved predominantly the spinal cord. Furthermore, AZ889 abolished NMDA-dependent wind-up of spinal withdrawal reflex pathway in neuropathic animals giving insight into the spinal mechanism underlying the analgesic properties of AZ889.</p> <p>Conclusions</p> <p>Overall, this study strengthens the important role of CCR2 in neuropathic pain and highlights feasibility that interfering on this mechanism at the spinal level with a selective antagonist can provide new analgesia opportunities.</p
Metabolic state alters economic decision making under risk in humans
Background: Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores). Specifically, animals often express a preference for risky (more variable) food sources when below a metabolic reference point (hungry), and safe (less variable) food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans.
Methodology/Principal Findings: We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake), and circulating leptin levels (providing an assay of energy reserves). We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively.
Conclusions/Significance:
We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that this sensitivity in human risk-preference to current metabolic state has significant implications for both real-world economic transactions and for aberrant decision-making in eating disorders and obesity
Calcitization of aragonitic bryozoans in Cenozoic tropical carbonates from East Kalimantan, Indonesia
© The Author(s) 2016. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The file attached is the published version of the article
Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness
BACKGROUND: Abdominal aortic aneurysm (AAA) is a prevalent disease which is of significant concern because of the morbidity associated with the continuing expansion of the abdominal aorta and its ultimate rupture. The transient interaction between blood flow and the wall contributes to wall stress which, if it exceeds the failure strength of the dilated arterial wall, will lead to aneurysm rupture. Utilizing a computational approach, the biomechanical environment of virtual AAAs can be evaluated to study the affects of asymmetry and wall thickness on this stress, two parameters that contribute to increased risk of aneurysm rupture. METHODS: Ten virtual aneurysm models were created with five different asymmetry parameters ranging from β = 0.2 to 1.0 and either a uniform or variable wall thickness to study the flow and wall dynamics by means of fully coupled fluid-structure interaction (FSI) analyses. The AAA wall was designed to have a (i) uniform 1.5 mm thickness or (ii) variable thickness ranging from 0.5 – 1.5 mm extruded normally from the boundary surface of the lumen. These models were meshed with linear hexahedral elements, imported into a commercial finite element code and analyzed under transient flow conditions. The method proposed was then compared with traditional computational solid stress techniques on the basis of peak wall stress predictions and cost of computational effort. RESULTS: The results provide quantitative predictions of flow patterns and wall mechanics as well as the effects of aneurysm asymmetry and wall thickness heterogeneity on the estimation of peak wall stress. These parameters affect the magnitude and distribution of Von Mises stresses; varying wall thickness increases the maximum Von Mises stress by 4 times its uniform thickness counterpart. A pre-peak systole retrograde flow was observed in the AAA sac for all models, which is due to the elastic energy stored in the compliant arterial wall and the expansion force of the artery during systole. CONCLUSION: Both wall thickness and geometry asymmetry affect the stress exhibited by a virtual AAA. Our results suggest that an asymmetric AAA with regional variations in wall thickness would be exposed to higher mechanical stresses and an increased risk of rupture than a more fusiform AAA with uniform wall thickness. Therefore, it is important to accurately reproduce vessel geometry and wall thickness in computational predictions of AAA biomechanics
- …