52 research outputs found

    Температурное поле в кристалле иттрий-алюминиевого граната при двухстадийном выращивании

    Get PDF
    Установлено существование оптимального значения теплопроводности, при котором достигается наиболее равномерное распределение модуля температурного градиента на фронте кристаллизации

    The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid

    Get PDF
    Neurogenesis continues throughout adulthood in specialized regions of the brain. One of these regions is the subventricular zone. During brain development, neurogenesis is regulated by a complex interplay of intrinsic and extrinsic cues that control stem-cell survival, renewal and cell lineage specification. Cerebrospinal fluid (CSF) is an integral part of the neurogenic niche in development as it is in direct contact with radial glial cells, and it is important in regulating proliferation and migration. Yet, the effect of CSF on neural stem cells in the subventricular zone of the adult human brain is unknown. We hypothesized a persistent stimulating effect of ventricular CSF on neural stem cells in adulthood, based on the literature, describing bulging accumulations of subventricular cells where CSF is in direct contact with the subventricular zone. Here, we show by immunohistochemistry on post-mortem adult human subventricular zone sections that neural stem cells are in close contact with CSF via protrusions through both intact and incomplete ependymal layers. We are the first to systematically quantify subventricular glial nodules denuded of ependyma and consisting of proliferating neural stem and progenitor cells, and showed that they are present from foetal age until adulthood. Neurosphere, cell motility and differentiation assays as well as analyses of RNA expression were used to assess the effects of CSF of adult humans on primary neural stem cells and a human immortalized neural stem cell line. We show that human ventricular CSF increases proliferation and decreases motility of neural stem cells. Our results also indicate that adult CSF pushes neural stem cells from a relative quiescent to a more active state and promotes neuronal over astrocytic lineage differentiation. Thus, CSF continues to stimulate neural stem cells throughout aging

    Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status

    Get PDF
    BACKGROUND: Macrophages play a dual role in multiple sclerosis (MS) pathology. They can exert neuroprotective and growth promoting effects but also contribute to tissue damage by production of inflammatory mediators. The effector function of macrophages is determined by the way they are activated. Stimulation of monocyte-derived macrophages in vitro with interferon-γ and lipopolysaccharide results in classically activated (CA/M1) macrophages, and activation with interleukin 4 induces alternatively activated (AA/M2) macrophages. METHODS: For this study, the expression of a panel of typical M1 and M2 markers on human monocyte derived M1 and M2 macrophages was analyzed using flow cytometry. This revealed that CD40 and mannose receptor (MR) were the most distinctive markers for human M1 and M2 macrophages, respectively. Using a panel of M1 and M2 markers we next examined the activation status of macrophages/microglia in MS lesions, normal appearing white matter and healthy control samples. RESULTS: Our data show that M1 markers, including CD40, CD86, CD64 and CD32 were abundantly expressed by microglia in normal appearing white matter and by activated microglia and macrophages throughout active demyelinating MS lesions. M2 markers, such as MR and CD163 were expressed by myelin-laden macrophages in active lesions and perivascular macrophages. Double staining with anti-CD40 and anti-MR revealed that approximately 70% of the CD40-positive macrophages in MS lesions also expressed MR, indicating that the majority of infiltrating macrophages and activated microglial cells display an intermediate activation status. CONCLUSIONS: Our findings show that, although macrophages in active MS lesions predominantly display M1 characteristics, a major subset of macrophages have an intermediate activation status

    Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder

    No full text
    BACKGROUND: In major depressive disorder, selective serotonin reuptake inhibitors target the serotonin transporter (SERT). Their response rates (30-50%) are modified by SERT promotor polymorphisms (5-HTTLPR). OBJECTIVES: To quantify the relationship between SERT occupancy and response, and whether 5-HTTLPR is a modifier. METHODS: Drug-free depressed outpatients (n=49; both sexes; aged 25-55 years), received paroxetine (20 mg/day). We quantified SERT occupancy with iodine-123-labeled 2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane single-photon emission computed tomography imaging at baseline and after 6 weeks; we genotyped 5-HTTLPR (S, LG, LA). Primary outcomes: percentage decrease in 17-item Hamilton Depression Rating Scale and response (>/=50% decrease of 17-item Hamilton Depression Rating Scale). RESULTS: A significant positive relationship between SERT occupancy and clinical response existed only in the LA/LA genotype (P <0.002). Relative to paroxetine serum concentrations maximal midbrain SERT occupancy was numerically higher for LA/LA compared with other genotypes, but this difference was nonsignificant (P=0.188). CONCLUSION: Higher SERT occupancy is only associated with more clinical improvement in the LA/LA genotype. We hypothesize that the LA/LA carriers have a more dynamic serotonergic system, which seems more responsive to selective serotonin reuptake inhibitors. (ISRCTN trial register ISRCTN44111488; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=193

    Regulation of intestinal LDLR by the LXR-IDOL axis

    No full text
    Background and aims: Cholesterol metabolism is tightly regulated by transcriptional and post-transcriptional mechanisms. Accordingly, dysregulation of cholesterol metabolism is a major risk factor for the development of coronary artery disease and associated complications. In recent years, it has become apparent that next to the liver, the intestine plays a key role in systemic cholesterol metabolism by governing cholesterol absorption, secretion, and incorporation into lipoprotein particles. We have previously demonstrated that the Liver X receptor (LXR)-regulated E3 ubiquitin ligase inducible degrader of LDLR (IDOL) is a regulator of cholesterol uptake owing to its ability to promote the ubiquitylation of the low-density lipoprotein receptor (LDLR). However, whether the LXR-IDOL-LDLR axis regulates the LDLR in the intestine and whether this influences intestinal cholesterol homeostasis is not known. Methods: In this study, we evaluated the role of the LXR-IDOL-LDLR axis in enterocyte cell models and in primary enterocytes isolated from Idol(−/−) and wild type mice. Furthermore, we studied the regulation of intestinal LDLR in Idol(−/−) and in wild type mice treated with the LXR agonist GW3965. Finally, we assessed ezetimibe-induced trans-intestinal cholesterol efflux in Idol(−/−) mice. Results: We show that in a wide range of intestinal cell lines LXR activation decreases LDLR protein abundance, cell surface occupancy, and LDL uptake in an IDOL-dependent manner. Similarly, we find that pharmacological dosing of C57BL6/N mice with the LXR agonist GW3965 increases Idol expression across the intestine with a concomitant reduction in Ldlr protein. Conversely, primary enterocytes isolated from Idol(−/−) mice have elevated Ldlr. To test whether these changes contribute to trans-intestinal cholesterol efflux, we measured fecal cholesterol in mice following ezetimibe dosing, but found no differences between Idol(−/−) and control mice in this setting. Conclusions: In conclusion, our study establishes that the LXR-IDOL-LDLR axis is active in the intestine and is part of the molecular circuitry that maintains cholesterol homeostasis in enterocytes

    Identification of the ER-resident E3 ubiquitin ligase RNF145 as a novel LXR-regulated gene

    No full text
    Cellular cholesterol metabolism is subject to tight regulation to maintain adequate levels of this central lipid molecule. Herein, the sterol-responsive Liver X Receptors (LXRs) play an important role owing to their ability to reduce cellular cholesterol load. In this context, identifying the full set of LXR-regulated genes will contribute to our understanding of their role in cholesterol metabolism. Using global transcriptional analysis we report here the identification of RNF145 as an LXR-regulated target gene. We demonstrate that RNF145 is regulated by LXRs in both human and mouse primary cells and cell lines, and in vivo in mice. Regulation of RNF145 by LXR depends on a functional LXR-element in its proximal promotor. Consistent with LXR-dependent regulation of Rnf145 we show that regulation is lost in macrophages and fibroblasts from Lxrαβ(-/-) mice, and also in vivo in livers of Lxrα(-/-) mice treated with the LXR synthetic ligand T0901317. RNF145 is closely related to RNF139/TRC8, an E3 ligase implicated in control of SREBP processing. However, silencing of RNF145 in HepG2 or HeLa cells does not impair SREBP1/2 processing and sterol-responsive gene expression in these cells. Similar to TRC8, we demonstrate that RNF145 is localized to the ER and that it possesses intrinsic E3 ubiquitin ligase activity. In summary, we report the identification of RNF145 as an ER-resident E3 ubiquitin ligase that is transcriptionally controlled by LX

    Silencing GFAP isoforms in astrocytoma cells disturbs laminin-dependent motility and cell adhesion

    No full text
    Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed in astrocytes and neural stem cells. The GFAP gene is alternatively spliced, and expression of GFAP is highly regulated during development, on brain damage, and in neurodegenerative diseases. GFAPα is the canonical splice variant and is expressed in all GFAP-positive cells. In the human brain, the alternatively spliced transcript GFAPδ marks specialized astrocyte populations, such as subpial astrocytes and the neurogenic astrocytes in the human subventricular zone. We here show that shifting the GFAP isoform ratio in favor of GFAPδ in astrocytoma cells, by selectively silencing the canonical isoform GFAPα with short hairpin RNAs, induced a change in integrins, a decrease in plectin, and an increase in expression of the extracellular matrix component laminin. Together, this did not affect cell proliferation but resulted in a significantly decreased motility of astrocytoma cells. In contrast, a down-regulation of all GFAP isoforms led to less cell spreading, increased integrin expression, and a >100-fold difference in the adhesion of astrocytoma cells to laminin. In summary, isoform-specific silencing of GFAP revealed distinct roles of a specialized GFAP network in regulating the interaction of astrocytoma cells with the extracellular matrix through laminin.-Moeton, M., Kanski, R., Stassen, O. M. J. A., Sluijs, J. A., Geerts, D., van Tijn, P., Wiche, G., van Strien, M. E., Hol, E. M. Silencing GFAP isoforms in astrocytoma cells disturbs laminin dependent motility and cell adhesion

    A MARCH6 and IDOL E3 Ubiquitin Ligase Circuit Uncouples Cholesterol Synthesis from Lipoprotein Uptake in Hepatocytes

    No full text
    Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptak
    corecore