42,915 research outputs found

    On the Kleinman-Martin integral equation method for electromagnetic scattering by a dielectric body

    Full text link
    The interface problem describing the scattering of time-harmonic electromagnetic waves by a dielectric body is often formulated as a pair of coupled boundary integral equations for the electric and magnetic current densities on the interface Γ\Gamma. In this paper, following an idea developed by Kleinman and Martin \cite{KlMa} for acoustic scattering problems, we consider methods for solving the dielectric scattering problem using a single integral equation over Γ\Gamma for a single unknown density. One knows that such boundary integral formulations of the Maxwell equations are not uniquely solvable when the exterior wave number is an eigenvalue of an associated interior Maxwell boundary value problem. We obtain four different families of integral equations for which we can show that by choosing some parameters in an appropriate way, they become uniquely solvable for all real frequencies. We analyze the well-posedness of the integral equations in the space of finite energy on smooth and non-smooth boundaries

    Shape derivatives of boundary integral operators in electromagnetic scattering. Part I: Shape differentiability of pseudo-homogeneous boundary integral operators

    Full text link
    In this paper we study the shape differentiability properties of a class of boundary integral operators and of potentials with weakly singular pseudo-homogeneous kernels acting between classical Sobolev spaces, with respect to smooth deformations of the boundary. We prove that the boundary integral operators are infinitely differentiable without loss of regularity. The potential operators are infinitely shape differentiable away from the boundary, whereas their derivatives lose regularity near the boundary. We study the shape differentiability of surface differential operators. The shape differentiability properties of the usual strongly singular or hypersingular boundary integral operators of interest in acoustic, elastodynamic or electromagnetic potential theory can then be established by expressing them in terms of integral operators with weakly singular kernels and of surface differential operators

    Shape derivatives of boundary integral operators in electromagnetic scattering. Part II : Application to scattering by a homogeneous dielectric obstacle

    Full text link
    We develop the shape derivative analysis of solutions to the problem of scattering of time-harmonic electromagnetic waves by a bounded penetrable obstacle. Since boundary integral equations are a classical tool to solve electromagnetic scattering problems, we study the shape differentiability properties of the standard electromagnetic boundary integral operators. The latter are typically bounded on the space of tangential vector fields of mixed regularity TH\sp{-1/2}(\Div_{\Gamma},\Gamma). Using Helmholtz decomposition, we can base their analysis on the study of pseudo-differential integral operators in standard Sobolev spaces, but we then have to study the G\^ateaux differentiability of surface differential operators. We prove that the electromagnetic boundary integral operators are infinitely differentiable without loss of regularity. We also give a characterization of the first shape derivative of the solution of the dielectric scattering problem as a solution of a new electromagnetic scattering problem.Comment: arXiv admin note: substantial text overlap with arXiv:1002.154

    Shape derivatives of boundary integral operators in electromagnetic scattering

    Full text link
    We develop the shape derivative analysis of solutions to the problem of scattering of time-harmonic electromagnetic waves by a bounded penetrable obstacle. Since boundary integral equations are a classical tool to solve electromagnetic scattering problems, we study the shape differentiability properties of the standard electromagnetic boundary integral operators. Using Helmholtz decomposition, we can base their analysis on the study of scalar integral operators in standard Sobolev spaces, but we then have to study the G\^ateaux differentiability of surface differential operators. We prove that the electromagnetic boundary integral operators are infinitely differentiable without loss of regularity and that the solutions of the scattering problem are infinitely shape differentiable away from the boundary of the obstacle, whereas their derivatives lose regularity on the boundary. We also give a characterization of the first shape derivative as a solution of a new electromagnetic scattering problem

    Asymptotic Exponential Arbitrage and Utility-based Asymptotic Arbitrage in Markovian Models of Financial Markets

    Get PDF
    Consider a discrete-time infinite horizon financial market model in which the logarithm of the stock price is a time discretization of a stochastic differential equation. Under conditions different from those given in a previous paper of ours, we prove the existence of investment opportunities producing an exponentially growing profit with probability tending to 11 geometrically fast. This is achieved using ergodic results on Markov chains and tools of large deviations theory. Furthermore, we discuss asymptotic arbitrage in the expected utility sense and its relationship to the first part of the paper.Comment: Forthcoming in Acta Applicandae Mathematica

    Manifolds admitting stable forms

    Get PDF
    In this note we give a direct method to classify all stable forms on Rn\R^n as well as to determine their automorphism groups. We show that in dimension 6,7,8 stable forms coincide with non-degnerate forms. We present necessary conditions and sufficient conditions for a manifold to admit a stable form. We also discuss rich properties of the geometry of such manifolds.Comment: 19 page
    • …
    corecore