16 research outputs found

    Can UK passenger vehicles be designed to meet 2020 emissions targets? A novel methodology to forecast fuel consumption with uncertainty analysis

    Get PDF
    Vehicle manufacturers are required to reduce their European sales-weighted emissions to 95 g CO2/km by 2020, with the aim of reducing on-road fleet fuel consumption. Nevertheless, current fuel consumption models are not suited for the European market and are unable to account for uncertainties when used to forecast passenger vehicle energy-use. Therefore, a new methodology is detailed herein to quantify new car fleet fuel consumption based on vehicle design metrics. The New European Driving Cycle (NEDC) is shown to underestimate on-road fuel consumption in Spark (SI) and Compression Ignition (CI) vehicles by an average of 16% and 13%, respectively. A Bayesian fuel consumption model attributes these discrepancies to differences in rolling, frictional and aerodynamic resistances. Using projected inputs for engine size, vehicle mass, and compression ratio, the likely average 2020 on-road fuel consumption was estimated to be 7.6 L/100 km for SI and 6.4 L/100 km for CI vehicles. These compared to NEDC based estimates of 5.34 L/100 km (SI) and 4.28 L/100 km (CI), both of which exceeded mandatory 2020 fuel equivalent emissions standards by 30.2% and 18.9%, respectively. The results highlight the need for more stringent technological developments for manufacturers to ensure adherence to targets, and the requirements for more accurate measurement techniques that account for discrepancies between standardised and on-road fuel consumption.NEDC data measurements were supplied by CAP Consulting. The authors are also grateful to the Energy Efficient Cities Initiative and the EPSRC (EP/F034350/1) for funding this work.This is the author accepted mansucript. The final version is available via Elsevier at http://dx.doi.org/10.1016/j.apenergy.2015.03.04

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Cost-effectiveness of alternative powertrains for reduced energy use and CO<inf>2</inf> emissions in passenger vehicles

    No full text
    This work analysed the cost-effectiveness of avoiding carbon dioxide (CO2) emissions using advanced internal combustion engines, hybrids, plug-in hybrids, fuel cell vehicles and electric vehicles across the nine UK passenger vehicles segments. Across all vehicle types and powertrain groups, minimum installed motive power was dependent most on the time to accelerate from zero to 96.6km/h (60mph). Hybridising the powertrain reduced the difference in energy use between vehicles with slow (t z - 60 > 8 s) and fast acceleration (t z - 60 < 8 s) times. The cost premium associated with advanced powertrains was dependent most on the powertrain chosen, rather than the performance required. Improving non-powertrain components reduced vehicle road load and allowed total motive capacity to decrease by 17%, energy use by 11%, manufacturing cost premiums by 13% and CO2 emissions abatement costs by 15%. All vehicles with advanced internal combustion engines, most hybrid and plug-in hybrid powertrains reduced net CO2 emissions and had lower lifetime operating costs than the respective segment reference vehicle. Most powertrains using fuel cells and all electric vehicles had positive CO2 emissions abatement costs. However, only vehicles using advanced internal combustion engines and parallel hybrid vehicles may be attractive to consumers by the fuel savings offsetting increases in vehicle cost within two years. This work demonstrates that fuel savings are possible relative to today's fleet, but indicates that the most cost-effective way of reducing fuel consumption and CO2 emissions is by advanced combustion technologies and hybridisation with a parallel topology. © 2014 Elsevier Ltd

    Emissions, Performance and Design of UK Passenger Vehicles

    No full text
    Consumer, legal and technological factors influence the design, performance and emissions of light duty vehicles. This work examines how design choices made by manufacturers for the UK market result in emissions and performance of vehicles throughout the past decade (2001-2011). Light-duty vehicle (LDV) fuel consumption, CO2_2 emissions and performance is compared across different combinations of air and fuel delivery system using vehicle performance metrics of power density and time to accelerate from rest to 100 km/h (62 mph, tz−62_{z-62}). Increased adoption of direct injection and turbocharging technologies helped reduce spark ignition (SI, gasoline vehicles) and compression ignition (CI, diesel vehicles) fuel consumption by 22% and 19%, respectively over the decade. These improvements were largely achieved by increasing compression ratios in SI vehicles (3.6%), turbocharging CI vehicles and engine downsizing by 5.7-6.5% across all technologies. Simultaneously, vehicle performance improved, through increased engine power density resulting in greater acceleration. Across the decade, tz−62_{z-62} fell 9.4% and engine power density increased 17% for SI vehicles. For CI vehicles, tz−62_{z-62} fell 18% while engine power density rose 28%. Greater fuel consumption reductions could have been achieved if vehicle acceleration was maintained at 2001 levels, applying drive train improvements to improved fuel economy and reduced CO2_2 emissions. Fuel consumption and CO2_2 emissions declined at faster rates once the European emissions standards were introduced with SI CO2_2 emissions improving by 3.4 g/km/year for 2001-2007 to 7.8 g/km/year thereafter. Similarly, CI LDVs declined by 2.0 g/km/year for 2001-2007 and 6.1 g/km/year after

    Quantifying the role of vehicle size, powertrain technology, activity and consumer behaviour on new UK passenger vehicle fleet energy use and emissions under different policy objectives

    No full text
    This paper quantifies the impacts of policy objectives on the composition of an optimum new passenger vehicle fleet. The objectives are to reduce individually absolute energy use and associated emissions of CO2_2, NOx_x and PM2.5_{2.5}. This work combines a top down, diversity-led approach to fleet composition with bottom-up models of 23 powertrain variants across nine vehicle segments. Changing the annual distance travelled only led to the smallest change in fleet composition because driving less mitigated the need to shift to smaller vehicles or more efficient powertrains. Instead, managing activity led to a ‘re-petrolisation’ of the fleet which yielded the largest reductions in emissions of NOx_x and PM2.5_{2.5}. The hybrid approach of changing annual distance travelled and increasing willingness to accept longer payback times incorporates management of vehicle activity with consumers’ demand for novel vehicle powertrains. Combining these changes in behaviour, without feebates, allowed the hybrid approach to return the largest reductions in energy use and CO2_2 emissions. Introducing feebates makes low-emitting vehicles more affordable and represents a supply side push for novel powertrains. The largest reductions in energy use and associated emissions occurred without any consumer behaviour change, but required large fees (£79–99 per g CO2_2/km) on high-emitting vehicles and were achieved using the most specialised fleets. However, such fleets may not present consumers with sufficient choice to be attractive. The fleet with best diversity by vehicle size and powertrain type was achieved with both the external incentive of the feebate and consumers modifying their activity. This work has a number of potential audiences: governments and policy makers may use the framework to understand how to accommodate the growth in vehicle use with pledged reductions in emissions; and original equipment manufacturers may take advantage of the bottom-up, vehicle powertrain inputs to understand the role their technology can play in a fleet under the influence of consumer behaviour change, external incentives and policy objectives

    How Well Do We Know the Future of COâ‚‚ Emissions? Projecting Fleet Emissions from Light Duty Vehicle Technology Drivers

    No full text
    While the UK has committed to reduce CO₂ emissions to 80% of 1990 levels by 2050, transport accounts for nearly a fourth of all emissions and the degree to which decarbonisation can occur is highly uncertain. We present a new methodology using vehicle and powertrain parameters within a Bayesian framework to determine the impact of engineering vehicle improvements on fuel consumption and CO₂ emissions. Our results show how design changes in vehicle parameters (e.g. mass, engine size and compression ratio) result in fuel consumption improvements from a fleet-wide mean of 5.6 L/100 km in 2014 to 3.0 L/100 km by 2030. The change in vehicle efficiency coupled with increases in vehicle numbers and total fleet-wide activity result in a total fleet-wide reduction of 41±10% in 2030, relative to 2012. Concerted internal combustion engine improvements result in a 48±10% reduction of CO2 emissions, while efforts to increase the number of diesel vehicles within the fleet had little additional effect. Increasing plug-in and all-electric vehicles reduced CO2 emissions by less (42±10% reduction) than concerted internal combustion engines improvements. However, if the grid decarbonises, electric vehicles reduce emissions by 45±9% with further reduction potential to 2050
    corecore