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Abstract 10 

Vehicle manufacturers are required to reduce their European sales-weighted emissions to 11 

95 g CO2/km by 2020, with the aim of reducing on-road fleet fuel consumption. 12 

Nevertheless, current fuel consumption models are not suited for the European market 13 

and are unable to account for uncertainties when used to forecast passenger vehicle 14 

energy-use. Therefore, a new methodology is detailed herein to quantify new car fleet 15 

fuel consumption based on vehicle design metrics. The New European Driving Cycle 16 

(NEDC) is shown to underestimate on-road fuel consumption in Spark (SI) and 17 

Compression Ignition (CI) vehicles by an average of 16% and 13%, respectively. A 18 

Bayesian fuel consumption model attributes these discrepancies to differences in rolling, 19 

frictional and aerodynamic resistances. Using projected inputs for engine size, vehicle 20 

mass, and compression ratio, the likely average 2020 on-road fuel consumption was 21 

estimated to be 7.6 L/100 km for SI and 6.4 L/100 km for CI vehicles. These compared to 22 

NEDC based estimates of 5.34 L/100 km (SI) and 4.28 L/100 km (CI), both of which 23 

exceeded mandatory 2020 fuel equivalent emissions standards by 30.2% and 18.9%, 24 

respectively. The results highlight the need for more stringent technological 25 

developments for manufacturers to ensure adherence to targets, and the requirements for 26 

more accurate measurement techniques that account for discrepancies between 27 

standardised and on-road fuel consumption. 28 
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Highlights 31 

 This paper introduces a Bayesian methodology to quantify new car fuel consumption. 32 

 Model presents user with more realistic, on-road, fuel consumption estimates. 33 

 Sources of NEDC uncertainty attributed to imprecise assumptions for resistances. 34 

 Fuel consumption of average UK car projected to exceed 2020 emissions standards. 35 

  36 
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1 Introduction 37 

The UK government is required to achieve an 80% reduction in national emissions by 38 

2050, of which passenger vehicles contributed to 12.5% (73.3 MtCO2-eq) in 2010 [1,2]. A 39 

sales weighted emission target was correspondingly imposed on vehicle manufacturers 40 

for 95 g CO2/km by 2020 [3], all of which helped passenger vehicle emissions to decline 41 

by 22% between 2007-2013 [4]. These reductions have been largely achieved with 42 

modifications to internal combustion engine (ICE) vehicles [4], though our capacity rely 43 

on such design improvements for additional emissions reductions is largely uncertainty. 44 

Since no model is available to relate individual vehicle design changes to likely ‘on-road’ 45 

fleet fuel consumption, we are limited in about abilities to assess manufacturer’s efforts to 46 

reduce emissions. 47 

 48 

A particular source of ambiguity stems from the New European Driving Cycle (NEDC) 49 

[5], which is estimated to under-represent on-road passenger vehicle fuel consumption by 50 

approximately 20-25% [6]. Considering that the NEDC test is used to determine 51 

manufacturers’ adherence to legislative standards, this failure has particular repercussions 52 

for the 2020 emissions targets that equate to fuel consumption ratings of approximately 53 

4.1 L/100 km for Spark-Ignition (SI) vehicles and 3.6 L/100 km for Compression-Ignition 54 

(CI) [7]. Such NEDC testing discrepancies could allow for significant variations of up to 55 

1.0 L/100 km (SI) and 0.9 L/100 km (CI) from real world fuel consumption, which must 56 

be considered when modelling manufacturer’s adherence to fuel consumption targets. 57 

 58 

This paper addresses two limitations of available top-down deterministic models that are 59 

used to quantify national transport energy consumption [8–10]. Firstly, the single point 60 

(i.e. deterministic) outputs from these models can be misleading to both academics and 61 

regulators, where underlying model structures and input variables are themselves subject 62 

to uncertainty. Secondly, current models are not designed to account for detailed vehicle 63 

design changes, as aggregate fuel consumption values are used to estimate annual fleet-64 

wide energy demands. These limitations collectively hinder our ability to assess the 65 

influence of new national passenger vehicle policies and design changed on national fuel 66 

consumption. Recognising this, a new Bayesian methodology is presented in this paper, 67 

called the Cambridge Automotive Research Modelling Application (CARma), to estimate 68 
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likely SI and CI fuel consumption of UK passenger vehicles from their inductive design 69 

inputs (i.e. vehicle mass, engine size and compression ratio). CARma is consequently 70 

designed to represent both NEDC and real-world driving cycles in its results, and is 71 

characterised by the following unique features: 72 

1. Hybrid Model Derivation - CARma is formulated from both engineering and 73 

statistical principals that relate fuel consumption to vehicle fleet properties 74 

(engine size, compression ratio, vehicle mass and engine speeds). 75 

2. Prior Uncertainty Quantification – Sources of uncertainty are categorised, and 76 

mitigation methods proposed. NEDC fuel consumption data is used to estimate 77 

uncertainties in the coefficients for the rolling resistance, aerodynamic drag, 78 

frictional powertrain loss and annual design improvements. These estimates are 79 

subsequently calibrated with open-source on-road fuel consumption data. 80 

3. Bayesian Model – A Bayesian methodology is introduced to calibrate uncertain 81 

parameters, ensuring that combined information from NEDC and on-road datasets 82 

are incorporated into CARma's outputs. Results are presented as probability 83 

distribution functions. 84 

4. On-Road Fuel Consumption Estimation – Stochastic passenger vehicle fuel 85 

consumption is estimated using both NEDC and real world data, allowing fleet-86 

wide energy consumption to be uniquely linked with inductive vehicle design 87 

variables. 88 

 89 

Having developed the CARma methodology, the model was used to quantify the 90 

likelihood of the average SI and CI vehicle, made available for sale in the UK, achieving 91 

its 2020 fuel consumption target (Section 4.4). Modelling uncertainties are similarly 92 

discussed in Section 4.2, before evolutionary projections for SI and CI vehicle mass, 93 

engine size and compression ratios are outlined in Section 4.3.  94 
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2 Background 95 

 Political Context 2.196 

Environmentally sustainable growth is a cornerstone for the current UK government [11], 97 

though decarbonisation of the transport fleet is particularly difficult to achieve [12–14]. 98 

The King Review’s recommendations on environmentally sustainable transport policies 99 

dismissed the existence of a single technology to reduce passenger vehicle emissions, 100 

though an emphasis on ICE vehicle development was recommend for near-term 101 

reductions [15,16]. Policies effecting UK transport emissions have henceforth avoided the 102 

promotion of one particular method to reduce passenger vehicle energy demands [17], 103 

instead choosing technological options that assume society’s preferences will not change 104 

[18]. This landscape has defined how vehicle manufacturers primarily relied on ICE 105 

efficiency improvements to reduce new car emissions by 28% between 2001-2013, where 106 

the maximum contribution of ultra-low emission vehicles was just 1.3% in 2013 [4].  107 

 European Transport Models 2.2108 

Burgess et al. [19] reviewed the seven most prominent transport-policy models used to 109 

analyse European transportation networks, separating their methodologies into three 110 

categories; top-down equilibrium models, of which the PRIMES [20] and MoMo [21] 111 

models are prominent examples, bottom-up simulation models, such as the TRENDS [22] 112 

and TREMOVES [23,24] models and, transport network models, including the ASTRA 113 

[25], SCENES [26] and EXPEDITE [27] models. These methodologies, however, are not 114 

specific to a particular transport mode, and are unable to account for detailed passenger 115 

vehicle technology changes. A number of models have consequently been developed to 116 

specifically focus on the simulation of passenger vehicle fleets, all of which are 117 

characterised by their top-down (i.e. deductive) or bottom-up (i.e. inductive) 118 

methodologies.  119 

 120 

Of those available deductive models, fleet-wide fuel consumption is effectively related to 121 

vehicle scrappage, propulsion system substitution [28–31] and design trade-offs [32–34], 122 

but the effects of detailed vehicle modifications are largely ignored. A number of 123 

inductive models have contrastingly been designed to relate bottom-up vehicle data to 124 

energy-use and emissions [31,35], though these models are themselves limited to 125 
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extrapolate fuel consumption of an entire fleet from a small set of representative vehicles 126 

(e.g. typically <10 distinct vehicles used to represent the 35,000 distinct vehicle-models 127 

in the UK [36]). Such aggregation undervalues the true diversity of technologies at a 128 

national level, whilst the requirement for exhaustive engine map and vehicle resistance 129 

specification prevents them from being used to assess fleet-wide effects. Indeed, no 130 

model is available to specifically account for annual vehicle mass, engine size and 131 

compression ratio changes on national fuel consumption, despite an acknowledgement 132 

that such design modifications are the best means of reducing emissions in the near-term 133 

[15,16]. 134 

 135 

A deficiency of integrated bottom-up passenger vehicle models is particularly noted for 136 

the UK [18], where the majority of studies have focused on the analyses of the North 137 

American fleet. UK policy makers consequently rely on the disparate National Transport 138 

Models [8], Digest of UK Energy Statistics (DUKES) [9] and Energy Consumption UK 139 

(ECUK) models [37] to estimate national energy-use and emissions, despite the 140 

recognition that their top-down opposing methodologies converge to different 141 

conclusions [38]. Though the UK Transport Carbon Energy model was developed to 142 

account for this absence of integrated bottom-up packages [18], it too is unable to account 143 

for inductive ICE design modifications. Indeed, no available passenger vehicle model can 144 

account for detailed vehicle design changes or modelling uncertainties, despite being 145 

frequently used to inform policy makers on the optimum courses of action to take when 146 

developing policies [8–10].  147 

 Determinism of Available Vehicle Energy-Demand Models 2.3148 

Beyond their limitations to simulate effects of inductive design changes, present packages 149 

are equally hindered by their inability to represent influences of underling risk and 150 

modelling assumptions. Though simulation uncertainty is inherent to all scientific models 151 

and attributed to modelling inadequacies and ignorance, available transportation models 152 

have primarily embraced deterministic procedures. Indeed, just one of the available 153 

packages accounts for aggregate annual uncertainties about mean fleet fuel consumption 154 

[39], which itself is incapable of capturing detailed ICE details and specific to the North 155 

American market. Of those available UK transport fleet models [10,40,41], all are 156 

deterministic and characterised by their reliance on aggregate fuel consumption data. A 157 
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new methodology is thus required to overcome the noted limitations in available vehicle 158 

energy demand models, where data and methodological uncertainties can be quantified 159 

and the effects of inductive vehicle design metrics assessed. 160 

 Sources of Uncertainty 2.4161 

The categorisation of modelling uncertainties is first required in vehicle simulation 162 

packages to ensure areas requiring risk mitigation are accurately identified. Several 163 

classification systems exist to distinguish between computer model uncertainties [42–44]. 164 

Among these, the Kennedy and O’Hagan scheme [44] is commonly used for statistical 165 

models. These uncertainties, and the measures adopted to mitigate them in CARma, are 166 

categorised as follows: 167 

1. Parameter Uncertainty and/or Observational Error - Caused by a number of 168 

factors including insufficient data availability and inaccuracies in the NEDC 169 

testing process, parameter uncertainty can be managed by increasing the number 170 

of observations and using them to calibrate model inputs. For this study, open-171 

source data was used to increase the sample size of fuel-consumption estimates 172 

[45], while Bayesian calibration allowed for improved parameter quantification. 173 

2. Model Inadequacy or Parametric Variability - Attributed to over-simplification of 174 

systems that leaves unspecified variables, model inadequacy represents the 175 

difference between the true fuel consumption and the model estimates. This 176 

uncertainty cannot be completely eliminated due to the possibility of unknown 177 

unknowns, but its effects were mitigated in CARma by validating the statistical 178 

model with first-principal and statistical techniques. 179 

3. Aleatory Uncertainty - Attributed to stochastic variability occurrin CARma is 180 

designed g within similarly defined homogeneous groups. For example, fuel 181 

consumption measurements can vary for identical vehicles tested under equivalent 182 

drive cycle conditions. Stochastic estimates were used to quantify model inputs 183 

and account for this underlying variability. 184 

 185 

The NEDC test procedure for fuel consumption is a particularly influential source of 186 

modelling uncertainty, whose results are used to monitor the influence of current 187 

emissions policies [6]. The test is performed over a standard driving cycle, using 188 

representative vehicle for each available model, to advantageously provide a repeatable 189 
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and comparable database of fuel consumption measurements. This assessment process, 190 

however, adversely provides manufactures an opportunity to optimise vehicle energy-use 191 

and emissions ratings to NEDC testing conditions. Indeed, a myriad of testing flexibilities 192 

are recognised to collectively cause deviances between NEDC and on-road fuel 193 

consumption and emissions of 21 ± 9% [6,28,46–49], many of which are listed below. 194 

1. Acceleration patterns inaccurately represent on-road driving conditions [50]. For 195 

example, NEDC vehicles are stationary for approximately 20% of the test, which 196 

favours stop-start technologies. 197 

2. Power and weight requirements of auxiliary systems are discounted (i.e. heating, 198 

sunroof and audio systems) [6], causing the true vehicle reference mass to be 199 

underestimated. Furthermore, air conditioning use is not included in NEDC tests, 200 

which has been shown to increase fuel consumption by up to 128% for extreme 201 

conditions [51]. 202 

3. A number of permissible flexibilities exist, including ambient test temperature, 203 

tyre specification, running-in periods, laboratory altitude, battery state-of-charge, 204 

reference mass, gear change schedule and the test track surface and grade [6]. 205 

Cumulatively, these flexibilities have been estimated to caused deviations in the 206 

order of 6-16% [52]. 207 

4. Mock et al. [46] note that certain modifications are allowed between NEDC and 208 

production vehicles, including engine control unit calibration and modification to 209 

tyre rolling resistance. Consequently, the potential for deviations between NEDC 210 

and on-road fuel consumption is further increased due to variations in the vehicles 211 

themselves. 212 

 Advantages of CARma 2.5213 

Recognising that available passenger vehicle energy demand models fail to both estimate 214 

uncertainty and account for evolutionary vehicle design changes, CARma was designed 215 

to stochastically estimate on-road fuel consumption for ICE vehicles sold in the UK. This 216 

Bayesian model uniquely provides the opportunity to quantify likely influences of 217 

detailed design changes on both individual-vehicle and fleet-wide fuel consumption, 218 

which no other passenger vehicle energy demand package is able to achieve. 219 

 220 

CARma has several advantages over the available passenger vehicle models beyond its 221 
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ability of relate bottom-up design metrics to vehicle fuel consumption. Its Bayesian 222 

approach advantageously foregoes the limiting requirement of other packages where data 223 

is often pre-selected and “cleaned” to remove outliers. Instead, CARma allows all data to 224 

be represented without bias and provides a natural means of representing parameter 225 

uncertainties, as initial assumptions can be updated with the acquisition of new data. This 226 

helpfully formalises the process of information acquisition, leading itself to the analysis 227 

of passenger vehicle fleets from other countries as new information becomes available.  228 
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3 Methodology 229 

 Data 3.1230 

CARma is designed to quantify the fuel consumption of UK SI and CI passenger vehicles 231 

using data from two sources - NEDC tests and open-source websites [45,36]. These data 232 

sources allowed for two separate models to be developed that relate physical vehicle 233 

characteristics to: 234 

1. Rated NEDC fuel consumption in the NEDC Model (NEDC-M); and, 235 

2. On-road fuel consumption in the On-Road Model (OR-M). 236 

Both models were sequentially used to estimate fleet fuel consumption, where the NEDC-237 

M was first employed to establish the prior uncertainties for model parameters. The prior 238 

distributions were subsequently calibrated with on-road fuel consumption data in the OR-239 

M model, from which NEDC and on-road fuel consumption projections were developed. 240 

A detailed summary of data inputs and model results is presented in Section 3.2, Figure 1. 241 

 242 

A dataset from CAP Consulting was used to specify the drivetrain, engine design and 243 

NEDC fuel consumption data of all 35,000 type-approval vehicles made available for sale 244 

in the UK since 2000 [36]. Open-source data consisted of 184,000 publically available 245 

on-road fuel consumption measurements collected from European users who each logged 246 

over 1500 km of vehicle distance travelled [45]. This selection criteria improves data 247 

integrity, yet the data’s dependence on spatial location causes a bias towards continental 248 

European drivers whose driving patterns are different from those of UK drivers
1
. The 249 

Bayesian model, however, is setup to utilize new regional data when it becomes 250 

available. Consequently, parameter estimates can be updated with the acquisition of 251 

additional UK-specific data to reduce this spatial bias.  252 

                                                 

1
 The average vehicle kilometer travelled for a German citizen in 2002, for example, was 13,500 km [69] 

compared to 14,758 km for the average UK citizen [70]. 
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 Model Selection 3.2253 

The Bayesian methodology requires a statistical model of the form shown in Equation 1, 254 

where θi denotes the unknown parameters of the i
th

 term, and known variables are 255 

represented using βi. First-principal derivation allowed for the inference of variables in 256 

each unknown parameter (θi).  257 

 258 

�̇�f = 𝛽1𝜃1 + 𝛽2𝜃2…+ 𝛽𝑖𝜃𝑖 + 𝑒𝑟𝑟𝑜𝑟   (1) 259 

 260 

3.2.1 First-Principal Model Selection 261 

Indicated mean effective pressure (imep - a measure of usable work produced) was used 262 

to encapsulate both the break mean effective pressure (bmep - a measure of an engine’s 263 

ability to produce work) and the frictional mean effective pressure (fmep- an indication of 264 

frictional losses within the drivetrain) of vehicles: 265 

 266 

𝑖𝑚𝑒𝑝 = 𝑏𝑚𝑒𝑝 + 𝑓𝑚𝑒𝑝  (2) 267 

 268 

The imep was decomposed in Equation 3 to show that the total indicated work (𝑊i), 269 

normalized with respect to engine size (𝑉d), is dependent on the fuel mass flow rate (�̇�f), 270 

lower calorific value (𝑄LCV) and engine efficiency (𝜂f,i) [53]. Likewise, the bmep’s 271 

normalised break work (𝑊b) was decomposed into break power (𝑃b), engine speed (𝑁, 272 

which is represented as the difference between engine speed at maximum power and 273 

torque) and the number of crank revolutions for each power stroke per cylinder (𝑛R) in 274 

Equation 4. 275 

 276 

𝑖𝑚𝑒𝑝 =  
𝑊i

𝑉d
=
�̇�f𝑄LCV𝜂f,i

𝑉d
  (3) 277 

 278 

𝑏𝑚𝑒𝑝 =  
𝑊b

𝑉d
= 

Pb𝑛R

𝑉d𝑁
   (4) 279 

 280 
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Additional inference of vehicle efficiency allowed for the incorporation of the 281 

compression ratio (𝑟c) into Equation 3, where 𝐴 and 𝛾 were used as coefficients specific 282 

to the constant-volume (i.e. SI) and constant-pressure (i.e. CI) idealized heat addition 283 

processes [53]. This relationship is represented in Equation 5, where the compression 284 

ratio variables are incorporated into a simplified compression ratio term (𝜂f,i = 𝑓(𝑟c) =285 

 𝑆𝑟c). The imep derivation was subsequently substituted into Equation 2, yielding the 286 

relationship presented in Equation 6. 287 

 288 

𝑖𝑚𝑒𝑝 =  
�̇�f𝑄LCV𝜂f,i

𝑉d
=
�̇�f𝑄LCV

𝑉d
[1 −

𝐴

𝑟cγ−1
] =

�̇�f𝑄LCV

𝑉d
𝑆𝑟c  (5) 289 

 290 

�̇�f𝑄LCV

𝑉d
𝑆𝑟c = 𝑏𝑚𝑒𝑝 + 𝑓𝑚𝑒𝑝 ⟹ �̇�f =

𝑉d

𝑄LCV𝑆𝑟c
[𝑏𝑚𝑒𝑝 + 𝑓𝑚𝑒𝑝]  (6) 291 

 292 

Similarly, the substitution of the break power with road-loaded power under constant 293 

velocity in Equation 4 allowed for the inclusion of additional vehicle metrics (see 294 

Equation 7) [53]. These included vehicle mass (𝑀v), the coefficient of rolling resistance 295 

(𝐶R), acceleration due to gravity (𝑔), vehicle speed (𝑆v), air density (𝜌), the coefficient of 296 

drag (𝐶D) and vehicle frontal area (𝐴v). 297 

 298 

𝑏𝑚𝑒𝑝 =  
𝑃b𝑛R

𝑉d𝑁
=

𝑛R

𝑉d𝑁
[𝐶R𝑀v𝑔𝑆v + 

𝜌

2
𝐶D𝐴v𝑆v

3]   (7) 299 

 300 

Equations 6 and 7 were combined and compared with the required Bayesian statistical 301 

form in Equation 1. Variables for which data is unavailable are represented using the 𝜃𝑖 302 

parameter and known variables (𝑀𝑣 [kg], 𝑉𝑑 [cc], 𝑆𝑟𝑐, 𝑁 [rpm], 𝑌𝑒𝑎𝑟 [year], as shown in 303 

bold in Equation 8) are represented using the 𝛽𝑖 parameters. Vehicle model year and error 304 

terms were further included to embody annual effects and model inaccuracies. The 305 

resulting model gives fuel consumption as a result of four 𝜃𝑖 parameters, 306 

 307 
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�̇�f = 𝜃1 (
𝑴𝐯

 𝑺𝒓𝐜 𝑵
)

⏟    
𝛽1

+ 𝜃2 (
1

 𝑺𝒓𝐜 𝑵
)

⏟    
𝛽2

+ 𝜃3 (
𝑽𝐝

 𝑺𝒓𝐜 
)

⏟  
𝛽3

+ 𝜃4 (𝒀𝒆𝒂𝒓)⏟    
𝛽4

+ 𝑒⏟
error

(8) 308 

where, 𝜃1 represents 
𝑛R𝐶R𝑔𝑆v

𝑄LCV⏟    
Rolling

, 𝜃2 represents 
𝑛R𝜌𝐶D𝐴v𝑆v

3

2𝑄LCV⏟      
Drag

 and 𝜃3 represents 
𝑓𝑚𝑒𝑝

𝑄LCV⏟
Friction

. 309 

 310 

Finally, combined variable estimates (𝛽1, 𝛽2, 𝛽3, 𝛽4) were normalized to their median 311 

2000 value. This ensures all 𝜃𝑖 values have units of L/100 km and the error term 312 

represents the average fuel consumption when all parameters are set to zero. Variables 313 

were also centered about median values to ensure model convergence and increased 314 

accuracy, with normalized and centered values shown in the Appendix B of this paper. 315 

 316 

3.2.2 Statistical Model Selection 317 

The variables selected using the first-principal derivation where authenticated using 318 

statistical selection techniques, which ensures a fundamental understanding of CARma’s 319 

both mechanical and statistical properties. Statistical parameter selection was initialised 320 

using a Variance Information Factors (VIF) stepwise selection process that eliminates 321 

multicollinearity amongst explanatory variables [54] based on coefficient of 322 

determination values (R
2
) in Equation 9.  323 

 324 

𝑉𝐼𝐹𝑗 = 
1

1−𝑅𝑗
2   (9) 325 

The j
th

 explanatory variable was regressed against all other explanatory variables (engine 326 

size, stroke, bore, cylinder numbers, rated power, rated torque, acceleration time, engine 327 

speeds at maximum power and torque, vehicle mass, compression ratios and capital costs) 328 

to establish a stepwise selection based on a VIF threshold of 10 (i.e. VIF ≥ 10 indicates 329 

variables are not independent) [54]. In this manner, all explanatory variables were 330 

eliminated expect for engine size (𝑉d), vehicle mass (𝑀v), compression ratio (𝑆𝑟c) and 331 

engine speeds at maximum rated power and torque (𝑁). Using Mallow’s Cp selection 332 

criterion [55], a model using all remaining explanatory variables was chosen as the best 333 

arithmetical form to achieve highest statistical significance. These statistical results 334 

justified the first-principal derivation in Equation 8, while the necessity for further 335 



14 Martin, Bishop, Choudhary, Boies 

transformation using a Box-Cox or equivalent function [56] was negated due to the 336 

model’s adhered to the regression requirements of linearity, error independence and 337 

normality [57]. 338 

 339 

 Bayesian and Holt Methodology 3.3340 

 341 

Figure 1: Schematic of CARma’s structure depicting a Bayesian model (left) to 342 

determine rated and on-road fuel consumption relations and a Holt model (right) to 343 

forecast fleet metrics. 344 

 345 

A summary of CARma’s methodology is presented in Figure 1. Two models were used to 346 

account for different uncertainties, with (1) the Bayesian Model quantifying parameter 347 

uncertainty and model inadequacy; and (2) a Holt exponential smoothing model 348 

quantifying aleatory uncertainties using stochastic projections for vehicle design inputs 349 

(i.e. mass, engine size and compression ratio) [58]. Heterogeneous clustering was also 350 

performed by fuel type to reduce the variability caused by categorical dichotomies. 351 

Combined, these measurers mitigate the main identifiable sources of uncertainty 352 

(excluding model ignorance, which can only be reduced with a cumulative increase in 353 
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scientific knowledge over time). Variable (i.e. Holt model outputs) and parameter (i.e. 354 

Bayesian model outputs) distributions were subsequently combined using Monte Carlo 355 

sampling to establish the final stochastic estimates for SI and CI fuel consumption.  356 

 357 

For the NEDC-M and OR-M models, Bayesian Regression [59,60] was used to update 358 

uncertain model parameters that combine preceding knowledge with newly collected on-359 

road data. This process is formally represented using the Bayes’ formulation in Equation 360 

10: 361 

 362 

𝑝(𝜃|𝐷)⏟    
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

∝ 𝑝(𝐷|𝜃)⏟    
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

∙ 𝑝(𝜃)⏟
𝑃𝑟𝑖𝑜𝑟

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

  (10) 363 

 364 

where, θ represents the vector of uncertain parameters, D represents fuel consumption 365 

data, and p(θ) represents the initial prior probability estimates for uncertain parameters 366 

based on NEDC data alone. Likewise, the statistical relationship among model variables 367 

and data is represented by a likelihood function p(D|θ), while p(θ|D) represents the 368 

posterior (calibrated) distributions of uncertain parameters that incorporate all available 369 

knowledge for fuel consumption (i.e. original NEDC and collected on-road data). As a 370 

result of the Bayesian Regression, the prior estimates of model parameters are updated 371 

with the information contained in the on-road fuel consumption data. Additionally, the 372 

posterior distributions of the model parameters are shown in Equation 10 to be 373 

proportional to the prior estimates and the likelihood, where the likelihood function 374 

quantifies how probable it is that the fuel consumption data is explained by the statistical 375 

model under the given set of uncertain parameters. 376 

 377 

No prior estimates were available for the unknown parameters in the NEDC-M and vague 378 

priors were thus chosen. The posterior probability distributions (𝑝(𝜃|𝐷)) for model 379 

parameters, obtained from the NEDC-M, were used as prior distributions in the OR-M. 380 

All results were developed using 50,000 Markov Chain Monte Carlo iterations in the 381 

Bayesian OpenBUGS software platform [61]. 382 

 383 
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The posterior distributions inferred from this two-step Bayesian Regression represent the 384 

first-order uncertainty (i.e. the random variation around an average value) for each 385 

parameter within a sub-group of vehicles. Combining these posterior distributions with 386 

single value inputs for vehicle mass, engine size and compression ratio allows for the 387 

stochastic estimation of fuel consumption that accounts for model inadequacy and data 388 

uncertainty. The additional specification of the four input variables (βi) as probability 389 

distribution functions incorporates second-order uncertainties into CARma, which stem 390 

from a lack of knowledge about the values of the input parameters themselves. These 391 

distributions were produced using the Holt exponential smoothing method [58], where the 392 

weighted average of past observations was used to forecast expected values to the year 393 

2020. Weights were chosen to decline exponentially over time so that recent observations 394 

contribute to the forecasted estimate more than earlier observations. This technique is 395 

widely used for the development of national statistical forecasts [62] and provides the 396 

means of projecting future vehicle mass, engine size and compression ratios in CARma. 397 

 398 

Finally, a note of caution is presented on the interpretation of derived parameter 399 

estimates, since the calibration of just four parameters causes other (uncalibrated) 400 

parameter uncertainties to be “lumped” into developed estimates. The selected calibration 401 

parameters should therefore be viewed as “pseudo-variables” that can cease to correspond 402 

to physically meaningful quantities. Though this approach is useful when developing fuel 403 

consumption forecasts from inherently uncertain input data (as is the intended function of 404 

this model), uncertainties due to ignorance are also partially lumped into the calibration 405 

parameters, which increases difficulty when interpreting a physical meaning from 406 

parameter estimates.  407 
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4 Results 408 

 NEDC Discrepancy and Model Validation 4.1409 

A comparison between the 35,000 NEDC and 184,000 on-road fuel consumption 410 

measurements in Table 1 shows that the mean on-road fuel consumption is 16.1% and 411 

12.5% higher than rated NEDC estimates for SI and CI vehicles, respectively. On 412 

average, NEDC tests underestimate actual fuel consumption by 0.96 L/100 km for SI 413 

vehicles and 0.98 L/100 km for CI. Larger standard deviations (SD) are noted in the 414 

open-source on-road data due to a larger variation in drive cycles and user driving styles. 415 

 416 

Table 1: Mean and standard deviation (SD) of NEDC and on-road fuel consumption 417 

for UK model years 2000-2011. 418 

Propulsion 

System 

  
NEDC Rated Fuel 

Consumption 
  

On-Road Fuel 

Consumption 
  Discrepancy 

  Mean SD   Mean SD   Mean SD 

  [L/100km]     [L/100km]     [L/100km]   

SI   5.95 1.22   6.90 1.48   0.96 1 

CI   7.84 1.76   8.82 2.01   0.98 1.28 

All   7.02 1.81   7.99 2.04   0.97 1.16 

 419 

The form of the statistical model in Equation 8 was validated using 10-fold cross-420 

validation to compare model estimates against separate test data [63]. For this process, 421 

NEDC data was partitioned into 10 equal subsamples, each of which were randomly split 422 

into two groups - 90% for model training and 10% for model testing. The 10 accuracy 423 

assessments were combined to give a measure of the model’s predictive performance 424 

using the mean squared error, which was estimated at 1.65. Results from this 10-fold 425 

cross validation are depicted in Appendix A, where modelled CARma estimates are 426 

shown to compare favourably against collected fuel consumption values. The statistical 427 

model form was also validated using linear regression, where the coefficients of 428 

determination were calculated to be 0.80 for CI vehicles (residual standard error of 0.65) 429 

and 0.82 for SI (residual standard error of 0.93).  430 
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 Calibration of Model Parameters 4.2431 

 432 

Figure 2: SI and CI prior (red dashed line for NEDC-M) and posterior density 433 

distributions (blue solid line for OR-M) for θ and error terms in units of L/100 km. 434 

Error terms represent average NEDC (prior) and on-road (posterior) fuel 435 

consumption when normalised model variables are set to zero. 436 
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Results from the Bayesian calibration process are shown in Figure 2 as prior and posterior 437 

distributions for the unknown model parameters
2
 (θ1, θ 2, θ 3, θ4, error). These 438 

distributions are the primary outcomes from the calibration process and help to determine 439 

how the input variables influence fuel consumption under NEDC and on-road driving 440 

conditions. Larger absolute magnitudes indicate a greater influence on fuel consumption, 441 

while greater parameter variance represents more uncertainty around their expected 442 

values. The spread of uncertainties are noted to have increased for all parameters 443 

following the Bayesian calibration, indicating that variability within the NEDC is less 444 

than real-world drive cycle variability. 445 

 446 

A comparison between the SI and CI distributions (see Equation 8) shows that on-road 447 

vehicles overestimate the θ1 parameter by an average of 34.8% for SI vehicles and 2.6% 448 

for CI. As all θ1 parameters are fixed other than Cr, these distortions can be thought of as 449 

the change in rolling resistance between the NEDC and on-road drive cycles, which can 450 

be achieved by over-inflating tires [64], reducing frictional losses [65], wheel 451 

realignment, and break adjustment (all of which are free parameters set by manufacturers 452 

during the NEDC tests) [52]. Similar trends are noted for the second group of unknown 453 

parameters (θ2), in which the coefficient of drag term dominates. Here, aerodynamic drag 454 

is shown to have a greater influence on on-road fuel consumption compared to NEDC 455 

fuel consumption (on-road θ2 is 46.6% lower for SI and 3.0% lower for CI), which may 456 

be caused by deviations between the average SI and CI vehicle coefficients of drag. 457 

Overall magnitudes of θ2 parameter estimates are also lower for CI compared to SI 458 

vehicles, which indicates that the influence of the drag coefficient on fuel consumption is 459 

greater for CI, compared to SI, vehicles (mean CI prior is -5.37 L/100 km compared to -460 

2.38 L/100 km for SI; mean CI posterior is -5.53 L/100 km compared to -3.49 L/100 km 461 

for SI). 462 

 463 

                                                 

2
 Prior and posterior distributions are represented as probability density functions (PDFs). These PDF’s 

encapsulate the probability of a variable falling within a certain range, whose cumulative area is equal to 

one. 
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Opposing trends are shown for parameter θ3 in Figure 3 e and f, implying that the NEDC 464 

overestimates frictional powertrain losses by an average of 7.8% for SI vehicles, but 465 

underestimate them by 32.3% for CI. Additionally, the magnitudes of NEDC-M and OR-466 

M θ3 values are higher for SI vehicles compared to CI (mean SI prior is 3.60 L/100 km 467 

compared to 1.62 L/100 km for CI), contrasting the results for the θ2 term. 468 

Overestimation of frictional losses may be attributed to a higher number of trips running 469 

under low engine load conditions in the on-road dataset. Considering that 50% of 470 

European trips are known to be less than 3 km in length [66], the results may highlight an 471 

overrepresentation of the extra-urban driving cycle in the combined SI NEDC estimates. 472 

Nevertheless, the relatively higher mass and compression ratios of CI vehicles causes 473 

them to have increased fmep fractional losses compared to SI engines [67]. As the NEDC 474 

test is unable to account for such discrepancies when using a standardized test cycle, the 475 

differences in mean parameter estimates are likely attributed to such design differences. 476 

 477 

A comparison between mean error terms shows average fuel consumption is higher for 478 

on-road vehicles when all parameter values are set to zero (8.80 L/100 km for on-road SI 479 

compared to 8.25 L/100 km; 6.97 L/100 km for on-road CI compared to 6.16 L/100 km). 480 

The influence of the vehicle model year parameter (θ4) on SI and CI fuel consumption 481 

also reduced from -0.165 L/100 km yr
-1

 to -0.053 L/100 km yr
-1

, and -0.128 L/100 km yr
-

482 

1
 to -0.022 L/100 km yr

-1
, respectively, between the NEDC-M and OR-M models. This 483 

trend is attributed to the increased year-on-year optimization of vehicle designs to the 484 

NEDC standard, a practice that allows vehicle manufactures to maximize adherence to 485 

legislative emissions standards. The results imply that realistic OR-M vehicle design 486 

changes (θ4) have a more limited influence on realistic fuel-consumption compared to 487 

NEDC estimates, which further undermines the accuracy of NEDC results. 488 

 489 

Finally, complete formula showing mean parameter values for both NEDC-M and OR-M 490 

models are presented for SI (Equations 11 and 12) and CI vehicles (Equations 13 and 14). 491 

Mean prior and posterior values are shown for each 𝜃𝑖 parameter whilst, mean values for 492 

base year variables in 2000 (β𝑖,2000̅̅ ̅̅ ̅̅ ̅̅ ) and across all years (𝛽�̅� = (
𝛽𝑖

𝛽𝑖,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

) are presented in 493 

Appendix B.  494 

 495 
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�̇�f,NEDC−SI  [
L

100 km
] =  {(

𝛽1

𝛽1,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽1
̅̅ ̅) 2.53⏟

𝜃1

− (
𝛽2

𝛽2,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽2
̅̅ ̅) 2.38

𝜃2
+ (

𝛽3

𝛽3,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽3
̅̅ ̅) 3.60⏟

𝜃3

−496 

(
𝛽4

𝛽4,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽4
̅̅ ̅) 0.165⏟  

𝜃4

+ 8.25⏟
𝑒𝑟𝑟𝑜𝑟

} [
L

100 km
] (11) 497 

 498 

�̇�f,OR−SI  [
L

100 km
] =  {(

𝛽1

𝛽1,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽1
̅̅ ̅) 3.41⏟

𝜃1

− (
𝛽2

𝛽2,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽2
̅̅ ̅) 3.49

𝜃2
+ (

𝛽3

𝛽3,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽3
̅̅ ̅) 3.34⏟

𝜃3

−499 

(
𝛽4

𝛽4,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽4
̅̅ ̅) 0.053⏟  

𝜃4

+ 8.80⏟
𝑒𝑟𝑟𝑜𝑟

} [
L

100 km
]  (12) 500 

 501 

�̇�f,NEDC−CI [
L

100 km
] = {(

𝛽1

𝛽1,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽1
̅̅ ̅) 4.91⏟

𝜃1

− (
𝛽2

𝛽2,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽2
̅̅ ̅) 5.37⏟

𝜃2

+ (
𝛽3

𝛽3,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽3
̅̅ ̅) 1.62⏟

𝜃3

−502 

(
𝛽4

𝛽4,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽4
̅̅ ̅) 0.128⏟  +

𝜃4

6.16⏟
𝑒𝑟𝑟𝑜𝑟

} [
L

100 km
] (13) 503 

 504 

�̇�f,OR−CI  [
L

100 km
] = {(

𝛽1

𝛽1,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽1
̅̅ ̅) 5.04⏟

𝜃1

− (
𝛽2

𝛽2,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽2
̅̅ ̅) 5.53⏟

𝜃2

+ (
𝛽3

𝛽3,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽3
̅̅ ̅) 2.24⏟

𝜃3

−505 

(
𝛽4

𝛽4,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽4
̅̅ ̅) 0.022⏟  

𝜃4

+ 6.97⏟
𝑒𝑟𝑟𝑜𝑟

} [
L

100 km
] (14)   506 
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 Holt Projections 4.3507 

Projections for the engine size, vehicle mass and compression ratio of SI and CI vehicles 508 

were derived from an analysis of NEDC rated data from 2001 to 2011. Historical annual 509 

averages were used as inputs into the Holt exponential smoothing model, where known 510 

data is represented in Figure 3 using the red regression line and the Holt model is 511 

represented using the blue. This methodology allows an accurate representation of 512 

historical and irregular trends, and second-order uncertainties are shown to increase from 513 

2011 to 2020 using a 95% normal predictive interval about mean forecasted values. 514 

 515 

 516 

Figure 3: Holt forecasts (dashed blue line) and historical data (solid red line) for (a-517 

b) compression ratio, (c-d) mass and (e-f) engine size of the average CI (left) and SI 518 

(right) passenger vehicle available for sale in the UK from 2011 to 2020. 519 

 520 

An analysis of historical CAP data shows evolutionary changes in UK passenger vehicle 521 

designs that have helped improve fuel efficiencies over time. For CI vehicles, the average 522 

engine size reduced by 6.55% between 2001 and 2011 (2153 cc to 2012 cc), which helped 523 

to reduce fuel consumption. During the same period, average CI vehicle mass modestly 524 

increased by 2.43%, though a reduction from 1571 kg to 1553 kg is noted from 2009 525 
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onwards. For SI vehicles, average compression ratios increased from 10.2 to 10.6 across 526 

the decade as manufacturers endeavoured to increase fuel conversion efficiencies. 527 

Additional reductions in SI mass and engine size (-1.09% and 5.73%, respectively) also 528 

helped to improved efficiencies of SI vehicles.  529 

 530 

Historical trends were projected using the Holt forecasts, with engine speeds at maximum 531 

power and torque assumed constant at 2011 averages (see Appendix B for values). The 532 

largest forecasted changes, relative to 2011 data, are for the compression ratio of CI 533 

vehicles and the engine size of SI vehicles that are correspondingly projected to decrease 534 

by 19.08% (16.56 to 13.40) and 18.39% (2007 kg to 1638 kg). Both trends are consistent 535 

with historical data and allow for the continued improvement of SI and CI environmental 536 

impact. Modest changes were projection for SI compression ratio (+2.64% to 10.88) and 537 

mass (-3.59% to 1317 kg), while forecasts for CI mass and engine size were more 538 

significant, at -4.96% (to 1476 kg) and -5.37% (to 1904 cc), respectively. 539 

 Forecasts for 2020 Fuel Consumption 4.4540 

The distributions of unknown model parameters (𝜃𝑖) and input variables (𝛽𝑖) were 541 

combined using Monte Carlo factorial sampling to forecast the likely fuel consumption of 542 

the average SI and CI vehicle available for sale in 2020. These results are presented in 543 

Figure 4 as probability distribution functions, where the ordinate specifies the relative 544 

probability of the estimate, and the variance in fuel consumption is shown on the 545 

abscissa. Likely 2020 estimates for on-road SI fuel consumption were 7.60 L/100 km, 546 

with a 50% probability consumption between 7.22 and 7.98 L/100 km. Similarly, the 547 

expected on-road fuel consumption of the average CI vehicle was 6.44 L/100 km, where 548 

the 50% confidence interval was between 6.01 and 6.88 L/100 km. 549 

 550 
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 551 

Figure 4: Main - Temporal projections for parameter inputs and NEDC fuel 552 

consumption for SI (top) and CI (bottom) vehicles. Inlay - CARma forecasts for the 553 

likely NEDC (red solid lines) and on-road (blue bashed lines) fuel consumption of 554 

the average SI (top) and CI (bottom) vehicle available for sale in 2020.  555 

 556 

Comparing the projected 2020 on-road fuel consumption to 2011 averages (8.25 L/100 557 

km for SI and 6.94 L/100 km for CI; NEDC ratings of 7.16 and 5.47 L/100 km, 558 

respectively), shows likely reductions in the fuel consumption of 7.9% (SI) and 7.2% 559 

(CI). These reductions are lower than those achieved from 2001 to 2011 (estimated using 560 

CAP data to be 22.0% for SI vehicles and 18.7% for CI), and indicate that the potential to 561 

improve fuel economy from evolutionary technological developments alone is 562 
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diminishing. Furthermore, a 50% chance exists that the reductions in fuel consumption 563 

will be between 3.3% and 12.7% for SI vehicles and 0.9% and 13.4% for CI, when 564 

confidence intervals are considered. 565 

 566 

Adherence to the fuel-equivalent emissions targets of 2020 is based on NEDC test results, 567 

and a direct comparison to CARma posterior forecasts (which account for on-road 568 

uncertainties) is not entirely appropriate. The NEDC-M distributions were consequently 569 

used to establish likely 2020 fuel consumption based on NEDC data alone, from which 570 

likely estimates of 5.34 and 4.28 L/100 km were derived for the corresponding SI and CI 571 

vehicle (see Figure 4). Even with this consideration, the average SI and CI vehicle was 572 

still expected to exceed its respective target by 30.2% and 18.9%. The results indicate that 573 

additional vehicle design changes, beyond those evolutionary developments considered in 574 

this study, may be required for vehicle manufacturers to adhere to their mandated sales 575 

weighted emissions targets. This study, however, excludes sale-weighted data and simply 576 

reviews the fuel consumption of the average available SI and CI vehicle. Consequently, 577 

the fleet averaged targets may still be achieved with the sale of smaller, lighter vehicles 578 

that compensate for the average technologies. 579 

 580 

The exceedance of both SI and CI technologies to the 2020 NEDC goals highlights the 581 

extraordinary technological changes required by manufacturers to avoid fleet-weighted 582 

exceedance. CARma provides a novel method to attribute the differences between rated 583 

and on-road fuel consumption estimates to specific technological assumptions for the 584 

rolling, frictional, aerodynamic and annual efficiency gains. Indeed, the optimisation of 585 

vehicle designs to NEDC conditions is shown to over-represent annual reductions in fuel 586 

consumption by 310% of the on-road SI estimate and 580% the CI (see Figure 4). This 587 

has direct implications of the true fuel efficiency gains achieved by manufacturers, as 588 

2020 on-road estimates exceeded 2020 rated values by 41.9% and 50.5% for SI and CI 589 

vehicles, respectively. NEDC limitations, however, are widely recognised by academics 590 

and regulators and the development of the Worldwide Harmonized Light Vehicles 591 

(WHLV) standard is currently underway to better predict exhaust emissions and fuel 592 

consumption under real-world driving conditions [68]. Once the WHLV standard is 593 

implemented, the Bayesian methodology will allow for new WHLV data to be included 594 
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in the derived model, using CARma parameter posteriors from this paper as the priors in 595 

future work. Consequently, the accuracy of CARma fuel consumption estimates will 596 

increase, while differences between testing standards can also be quantified.  597 
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5 Conclusions 598 

This paper introduces a new methodology to quantify the fuel consumption of the UK’s 599 

light-duty vehicle fleet, where historical data has been used to project the likely energy-600 

demands of the average SI and CI vehicle out to 2020. The proposed CARma model 601 

uniquely tracks the effects of inductive ICE-vehicle design changes on fleet-wide fuel 602 

consumption, while its ability to estimate uncertainties is similarly noted for its novelty. 603 

Discrepancies between NEDC and on-road fuel consumption were quantified, where the 604 

NEDC was shown to underestimate SI and CI fuel consumption by an average of 16.1% 605 

and 12.5%, respectively. A comparison between derived prior and posterior coefficients 606 

similarly revealed NEDC tests to underestimate the influence of aerodynamic losses and 607 

rolling resistances in both SI and CI vehicles. In particular, the optimisation of vehicle 608 

designs to the NEDC test conditions was shown to over-represent actual reductions in 609 

fuel consumption by an average of 310% of the on-road SI estimate and 580% of the CI. 610 

 611 

Evolutionary SI vehicle design changes were forecast from 2011 to 2020 using a Holt 612 

exponential smoothing model, with engine size projected to fall by 18.4%, weight by 613 

3.6% and compression ratio was projected to increase by 2.6%. Similar changes were 614 

forecast for the average CI vehicle, as engine size was predicted to fall by 5.5%, weight 615 

by 5.0% and compression ratio by 19.5%. Using future vehicle design forecasts as inputs 616 

in the CARma model, the average SI vehicle fuel consumption was estimated to be 7.60 617 

L/100 km, with a 50% likelihood between 7.22 and 7.98 L/100 km. Likewise, the most 618 

likely estimate for the average CI vehicle was 6.44 L/100 km, with a 50% likelihood 619 

between 6.01 to 6.88 L/100 km. Both passenger vehicles exceeded their 2020 NEDC fuel 620 

equivalent targets by 30.2% and 18.9%, respectively. This indicates that evolutionary 621 

design developments alone are unlikely to allow for the required reductions in vehicle 622 

consumption to be achieved. 623 

 624 

Finally, variability in the results highlights an underlying need to incorporate uncertainty 625 

when forecasting the influence of vehicle design changes on fuel consumption. The 626 

CARma model applies clustering to handle heterogeneity of SI and CI vehicles, whilst a 627 

Monte Carlo simulation was used to estimate the uncertainties about future vehicle design 628 

variables. As CARma is designed to utilise open-source fuel consumption data, the model 629 
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can be easily adapted to quantify fuel consumption in other national vehicle fleets. Work 630 

is presently underway to allow CARma to be used in both fleet-wide and single vehicle 631 

projection studies, while the inclusion of fuel consumption ratings from additional testing 632 

standards can also be considered to improve the accuracy of parameter estimates. A true 633 

understanding of uncertainty provides a better appreciation of likely changes in fuel 634 

consumption out to 2020, and highlights the requirements for additional efforts to meet 635 

emissions targets.  636 
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 641 

7 Nomenclature 642 

Acronym Definition 

NEDC New European Driving Cycle 

SI Spark ignition 

CI Compression ignition 

CARma Cambridge Automotive Research Modelling Application  

ICE Internal combustion engine  

NEDC-M New European Driving Cycle model 

OR-M On-road model 

θ CARma model parameter 

β CARma model variable 

imep Indicated mean effective pressure 

bmep Break mean effective pressure 

fmep Frictional mean effective pressure 

Wi Total indicated work  

Vd Engine size 

ṁf Fuel mass flow rate 

QLCV Lower calorific value 

ηf,i Engine efficiency 

Wb Normalized break work 

Pb Break Power 

N Engine Speed 

nR Number of crank revolutions for each power stroke per cylinder  

rc Compression Ratio 

A 
Coefficient distinguishing between idealised constant-volume and constant-

pressure thermodynamic process 

γ 
Heat capacity coefficient of idealised constant- volume and constant-

pressure thermodynamic processes 

Src Simplified compression ratio 

Mv Vehicle mass 

CR Coefficient of rolling resistance 

Sv Vehicle speed 

ρ Air density 

CD Coefficient of drag 
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Av Vehicle frontal area 

kg Kilograms 

cc Cubic centimetres 

rpm Revolutions per minute 

g Acceleration due to gravity 

VIF Variance information factors 

R
2
 Coefficient of determination 

p(θ|D) Bayesian posterior distribution 

p(D|θ) Bayesian likelihood function 

p(θ) Bayesian prior distribution 

SD Standard deviation 

WHLV  Worldwide Harmonized Light Vehicles  

 643 
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Appendix A 795 

 796 

Comparison between measured and actual fuel consumption, using 10-fold cross 797 

validation of CARma. R
2
 = 0.80 of CI and 0.82 for SI.   798 
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Appendix B 799 

Normalised and centred variable values used in the NEDC-M and OR-M models. 800 

Variable SI CI 

𝛽1,2000̅̅ ̅̅ ̅̅ ̅̅  [rpm kg
-1

] 0.8246 0.8065 

𝛽2,2000̅̅ ̅̅ ̅̅ ̅̅ ̅ [rpm] 0.0005978 0.000509 

𝛽3,2000̅̅ ̅̅ ̅̅ ̅̅ ̅ [cc
-1

] 2411 2306 

𝛽4,2000̅̅ ̅̅ ̅̅ ̅̅  [year
-1

] 1 1 

𝛽1̅̅ ̅ = (
𝛽𝑖

𝛽1,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 
0.8939 0.9765 

β2̅̅ ̅ = (
𝛽𝑖

𝛽2,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 
0.9372 1.014 

β3̅̅ ̅ = (
𝛽𝑖

𝛽3,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 
0.9055 0.9427 

β4̅̅ ̅ = (
𝛽𝑖

𝛽4,2000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 
6.879 7.961 

Engine Speed – Maximum Torque [rpm] 3125 1748 

Engine Speed – Maximum Power [rpm] 5786 3923 
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