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Abstract

This paper quantifies the impacts of policy objectives on the composition of an optimum new passenger

vehicle fleet. The objectives are to reduce individually absolute energy use and associated emissions of

CO2, NOx and PM2.5. This work combines a top down, diversity-led approach to fleet composition with

bottom-up models of 23 powertrain variants across nine vehicle segments. Changing the annual distance

travelled only led to the smallest change in fleet composition because driving less mitigated the need to shift

to smaller vehicles or more efficient powertrains. Instead, managing activity led to a ‘re-petrolisation, of the

fleet which yielded the largest reductions in emissions of NOx and PM2.5. The hybrid approach of changing

annual distance travelled and increasing willingness to accept longer payback times incorporates management

of vehicle activity with consumers’ demand for novel vehicle powertrains. Combining these changes in

behaviour, without feebates, allowed the hybrid approach to return the largest reductions in energy use and

CO2 emissions. Introducing feebates makes low-emitting vehicles more affordable and represents a supply

side push for novel powertrains. The largest reductions in energy use and associated emissions occurred

without any consumer behaviour change, but required large fees (£79-99 per g CO2/km) on high-emitting

vehicles and were achieved using the most specialised fleets. However, such fleets may not present consumers

with sufficient choice to be attractive. The fleet with best diversity by vehicle size and powertrain type was

achieved with both the external incentive of the feebate and consumers modifying their activity. This work

has a number of potential audiences: governments and policy makers may use the framework to understand

how to accommodate the growth in vehicle use with pledged reductions in emissions; and original equipment

manufacturers may take advantage of the bottom-up, vehicle powertain inputs to understand the role their

technology can play in a fleet under the influence of consumer behaviour change, external incentives and

policy objectives.
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1. Nomenclature

• Carbon dioxide, CO2

• Tank-to-wheel, the energy use and emissions associated with producing a fuel and delivering it to the

filling station, TTW

• Well-to-wheel, the sum of energy use and emissions from TTW and when the vehicle is in use, WTW

• Nitrous oxides, NOx

• Particular matter with diameter less 2.5 micrometers (µ), PM2.5

• LAP, local air pollutants comprising NOx and PM2.5

• Business as usual, BAU

• Feebates, a scheme which introduces subsidies for low emitting vehicles and taxes on high emitting

vehicles

• Vehicle kilometres travelled in a year, VKT

• Society of Motor Manufacturers and Traders, SMMT

• Hybrid Electric Vehicle, HEV

• Plug-in Hybrid Electric Vehicle, PHEV

• Electric Vehicle, EV

• Port injection spark ignition, PISI

• Direct injection spark ignition, DISI

• Direct injection compression ignition, DICI

• New vehicle fleet size, NVF

• Vehicle footprint (m2), the product of wheelbase and width, FP

• Luggage volume (m3), LUG

• Time to accelerate from rest to 60 mph or 96.6 km/h (s), Z60

• Effective drag (m2), the product of coefficient of drag and frontal area, ED

• Purchase price (£), PP
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• Payback time (years), the time taken for marginal vehicle purchase price increase relative to base

vehicle to be offset by savings in fuel cost, PBT

• Absolute TTW/WTW CO2 emissions allowed, C

• Percentage reduction in absolute TTW/WTW CO2 emissions, C RED

• Absolute energy use allowed, E

• Percentage reduction in absolute energy use, E RED

• Absolute LAP emissions allowed, N

• Percentage reduction in absolute LAP emissions, N RED

• Vehicle Excise Duty, the annual tax on UK vehicles based on their CO2 emissions (g/km), VED

2. Introduction1

This work quantifies the influence of four policy objectives on the composition of an optimum new UK2

passenger vehicle fleet. The individual objectives are to minimise: absolute energy use; the emission of3

tank-to-wheel (TTW) carbon dioxide (CO2); the emission of well-to-wheel (WTW)1 CO2; and the emission4

of TTW local air pollutants (LAP, particulate matter and nitrous oxides). The proportion of alternative5

novel powertrains increased from 0.1% in 2000 to 1.4% in 2012. The consequence of a large proportion6

of conventional powertrains means demand for road transport accounted for 27% (40 million tonnes of oil7

equivalent, Mtoe) of all the energy used in the UK in 2012. Consequently, road transport was responsible8

for 23% of all CO2 (480 Mt), 31% of all nitrous oxides (NOx, (340 kt) and 20% of all particulate matter with9

diameter less than 2.5 µm (PM2.5, 16 kt)2. Therefore, large changes in the composition of the new passenger10

vehicle fleet are required to achieve significant reductions in energy use and emissions. However, it remains11

unclear what that composition – number of vehicles, powertrain type and annual vehicle kilometres travelled12

(VKT) per vehicle – might need to be. This is important because the UK government has committed itself13

to reducing economy-wide GHG emissions by 80% below 1990 levels by 2050 [? ]. Therefore, an important14

contribution of this paper is to highlight the vehicle downsizing, technology switching and changes in VKT15

necessary now to set us on a path to meet future goals.16

1The WTW analysis accounts for the energy used in and associated emissions with the production of fuels, delivery of them

to the filling station and their use in the vehicle [? ]. This work considers WTW emissions only.
2Data available from the Department for Transport: Tables ENV0102 for energy use, ENV0202 for CO2 gases; ENV0301

for air pollutants; and VEH0253 for new cars by propulsion/fuel type. Available online at https://www.gov.uk/government/

statistical-data-sets/tsgb03.
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Fleet composition and adoption of new technology are modelled in the literature using three main17

approaches: diffusion rates; agent-based; and consumer choice [? ]. Diffusion rate models aim to identify18

the product life cycle and require both the ultimate market potential and peak year of sales to be known a19

priori. The other two methods consider consumers from the bottom up as individuals or groups, respectively.20

Both models require knowledge of consumer preferences. These are represented as a set of weighted attributes21

to determine the probability that one of a number of vehicles will be chosen. However, some attributes for22

novel powertrains can be difficult to obtain when there is little historical sales data available.23

This work uses fleet diversity to infer the net result of all consumer preferences from the top down.24

Therefore, instead of forecasting new fleet composition based on a host of input assumptions, we determine25

what is necessary today (2012) to meet certain policy objectives. There are three advantages to this approach.26

First, using current fleet information and data avoids the assumptions and uncertainty associated with long27

term scenarios and projections. Second, avoiding speculation by focusing on current state of the art maintains28

temporal consistency in the data and avoids technology optimism bias. Third, this work can be updated29

periodically using best available information to determine the new, optimum fleet. Gradual changes in30

vehicle cost, performance or consumer preference may yield new fleet compositions which evolve predictably31

and gradually. Large changes must arise simultaneously to result in a new optimum fleet which deviates32

significantly from the trend. Addressing mode shifting, energy use by and emissions from vehicles in service33

is beyond the scope of this paper.34

Diversity is an aggregate measure of the variety of vehicles, classified by Society of Motor Manufacturers35

and Traders (SMMT) segment and powertrain technology, which comprise the new fleet due to choices by36

individual consumers. The Shannon-Weiner measure (of diversity) [? ] is used for both SMMT segment37

and powertrain technology. Customers value diverse powertrain options [? ] and are more satisfied as the38

number of technology options, both available and already in circulation, increases [? ]. Initially, however,39

alternative technologies may be offered in limited numbers across makes and models which reduces the value40

placed on them by consumers [? ]. This work uses bottom-up simulations of 23 powertrain variants across41

each of the nine SMMT vehicle segments to maximise the number of options available to a consumer. The42

market share and availability of each vehicle powertrain type is an output of the model and serves to avoid43

pre-selecting winners and losers.44

The powertrain technologies considered across the best-selling vehicles in each SMMT vehicle segment [?45

]3 are: conventional powertrains using advanced internal combustion engines; series hybrid electric vehicles46

(HEV); parallel HEV; series plug-in HEV (PHEV); parallel PHEV: fuel cell HEV and PHEV; and electric47

vehicles (EV). The internal combustion engine technologies considered were port injection spark ignition48

3The best-selling vehicle reflects the most attractive option to consumers of vehicles in that segment. Competition between

makes and models within the same segment does not manifest as a change in diversity of the fleet by SMMT segment.
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(PISI), turbocharged PISI and turbocharged direct injection spark ignition (DISI), all using petrol. Internal49

combustion engines using diesel were all turbocharged, direct injection compression ignition (DICI). The50

nine vehicle segments are: the mini, super mini, lower medium, upper medium, executive, luxury, sports,51

multi-purpose vehicle (MPV) and sport-utility vehicle (SUV)/4X4 segments. Analysing the vehicle fleet by52

SMMT segment, rather than using the average of vehicle sizes, has three advantages: first, the attractiveness53

or suitability of certain technologies in specific vehicle segments can be quantified; second, incorporating54

the range of vehicle classes accounts explicitly for consumer choice based on the differences in size, price55

and performance; and third, changes in the distribution of vehicle number by segment allows the extent of56

downsizing to be quantified.57

In general, scenarios are used to quantify the role of vehicle technology and activity in the fleets of58

the future. Often, the scenarios include assumptions on technological learning, performance, costs and can59

pre-suppose winners and losers [? ? ? ? ? ? ? ? ? ? ? ]. Scenarios extend to include exogenous60

factors, such as the price of oil [? ? ] or the extent of biofuel blending [? ? ]. The consensus is that61

significant emissions reductions cannot be achieved by a single, silver bullet approach [? ? ? ? ]. Instead, a62

low CO2 emissions solution requires improvements in vehicle technology be paired with consumer behaviour63

change [? ? ? ]. Vehicle use is an important factor as growth in travel (activity) implies increasing absolute64

emissions which reduces the advantages of fuel efficient powertrains [? ? ? ? ]. Moreover, reducing vehicle65

travel can yield greater total benefit (reduced external costs) than may accrue from improved fuel economy66

[? ]. Vehicle downsizing, efficiency standards and fuel taxes can deliver large emissions reductions while67

mitigating the rebound effect of increased travel demand [? ? ? ]. Therefore, any model which addresses68

fleet CO2 emissions should account for vehicle size, powertrain type and the impact of activity.69

This work provides novel contributions to the body of knowledge and advances the state of the art in70

three main ways. First, we use a novel top-down approach to quantify the composition of the new passenger71

vehicle fleet necessary to achieve a suite of policy objectives. Second, the work is diversity-led to ensure72

the maximum number of options are available to satisfy consumer preferences and return a realistic fleet.73

Third, we optimise simultaneously vehicle segment, powertrain technology and annual VKT to account for74

the explicit effects of downsizing, technology switching and change in activity. A summary of the method75

is presented in Section ?? where the components of the model are introduced. Consumer behaviour change76

is included through soft constraints. This section describes the formulations for achieving the objective via77

changes to consumer behaviour and external policy interventions. The impacts of vehicle size, powertrain78

technology and activity on fleet diversity, energy use and emission of CO2 and LAP are presented and79

discussed in Section ??.80
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3. Method81

The schematic in Figure ?? illustrates how physical attributes, costs and external fiscal incentives were82

combined in the optimisation routine. The external fiscal incentives considered were fuel duty increases and83

feebates based on vehicle TTW CO2 emissions. The optimisation was implemented with Matlab R2015b.

Figure 1: Schematic of methodology. Orange circles illustrate the four policy objectives using consumer behaviour change only.

Purple circles illustrate policy objectives to minimise TTW CO2 emissions with each of fuel duty increases and TTW CO2

taxes. The red circles represent the soft constraints in the optimisation.

84

A feasible solution must satisfy the constraints in the optimisation. Therefore, the focus of each policy85

objective – reduction of energy use or emissions – was implemented as a constraint to ensure the new fleet86

met it. The value of the objective function is a consequence of achieving such a solution. The objective of87

the optimisation routine was to maximise fleet diversity (by SMMT segment and powertrain group) using88
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the Shannon-Weiner measure, calculated by:89

f = −

nSMMT∑
j=1

xj · ln(xj) ·
npowertrain∑

i=1

xi · ln(xi)

 ; (1)

where: f is the product of diversities of the fleet by SMMT segment and powertrain group; xj is the90

proportion of vehicles in each of the nine SMMT categories, nSMMT , j; xi is the proportion of vehicles in91

each of the powertrain groups, npowertrain, i. Diversity by SMMT segment increased from 1.66 in 2001 to92

1.74 in 2012. Diversity by SMMT segment may change if vehicles possess a similar combination of attributes93

while existing in different size classes. Diversity by powertrain type increased from 0.48 to 0.77 over the94

same period. The latter diversity may be expected to increase as more vehicle manufacturers offer HEV,95

PHEV and EV options. For example, the number of vehicle models with novel powertrains available to the96

market increased from 18 in 2007 to 47 – 24 petrol HEV, five diesel HEV, five PHEV and 12 EV models –97

in 2013 [? ]. Achieving this objective was subject to satisfying the following equality constraints:98

1. matching sales-weighted average vehicle footprint:99

nSMMT∑
j=1

npowertrain∑
i=1

fpi,j · xi,j
NV F

= FP ; (2)

where: fpi,j is the vehicle footprint (m2) of each vehicle: 2.38, mini; 2.49, super mini; 2.65, lower100

medium; 2.76, upper medium; 2.76, executive; 3.04, luxury; 2.43, sports; 2.66, SUV; and 2.70, MPV.101

FP is the sales-weighted average wheelbase in 2012, 4 m2 and NVF is the number of vehicles in the102

new fleet.103

2. matching sales-weighted average luggage volume:104

nSMMT∑
j=1

npowertrain∑
i=1

lugi,j · xi,j
NV F

= LUG; (3)

where: lugi,j is the luggage volume (m3) of each vehicle: 0.25, mini; 0.29, super mini; 0.32, lower105

medium; 0.46, upper medium; 0.48, executive; 0.45, luxury; 0.34, sports; 0.57, SUV; and 0.14, MPV.106

LUG is the sales-weighted average luggage volume in 2012, 0.34 m3.107

3. matching sales-weighted average time to accelerate from rest to 96.6 km/h (60 mph):108

nSMMT∑
j=1

npowertrain∑
i=1

z60i,j · xi,j
NV F

= Z60; (4)

where: z60i,j is the time (s) to accelerate from rest to 96.6 km/h (60 mph) for each vehicle: 12.1, mini;109

13.3, super mini; 10.8, lower medium; 8, upper medium; 7.4, executive; 7.1, luxury; 6.7, sports; 10.3,110

SUV; and 9.8, MPV. Z60 is the sales-weighted average time to accelerate to 96.6 km/h in 2012, 11 s.111
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4. matching sales-weighted average effective drag, taken as the product of coefficient of drag and frontal112

area and used as a proxy for vehicle attractiveness:113

nSMMT∑
j=1

npowertrain∑
i=1

edi,j · xi,j
NV F

= ED; (5)

where: edi,j is the effective drag (m2) of each vehicle: 0.36, mini; 0.68, super mini; 0.65, lower medium;114

0.64, upper medium; 0.55, executive; 0.64, luxury; 0.57, sports; 1.12, SUV; and 0.73, MPV. ED is the115

sales-weighted average effective drag in 2012, 0.70 m2.116

5. matching sales-weighted average annual fuel costs. Fuel costs were the largest activity-related expendi-117

ture for UK motorists in 2011 at £1,500 [? ]. The importance of fuel costs to consumer decision-making118

is such that an estimate for driving 19,000 km (or 12,000 miles) per year is given on the Fuel Economy119

Label on new cars:120

nSMMT∑
j=1

npowertrain∑
i=1

aci,j · xi,j
NV F

= AC; (6)

where: aci,j is the annual running cost of each vehicle; AC is the sales-weighted average running cost121

for the new vehicle fleet in 2012, £1,400. Annual costs were the sum of the capital cost premium and122

annual fuel savings of each vehicle, relative to the base case petrol in each SMMT segment. In April123

2012, petrol and diesel prices were £0.60/l and £0.65/l, respectively [? ]. Costs for electricity and124

hydrogen were £0.51/MJ and £0.11/MJ [? ], respectively. All costs were discounted to present using125

an interest rate of 2.06%4.126

6. matching sales-weighted average vehicle purchase price. Total manufacturing costs are used in [? ].127

These were converted to purchase price using a retail price equivalent of 1.47 which is the median128

value across a number of manufacturers [? ].129

nSMMT∑
j=1

npowertrain∑
i=1

ppi,j · xi,j
NV F

= PP ; (7)

where: ppi,j is the purchase price (£) of each vehicle; PP is the sales-weighted average purchase price130

for the new vehicle fleet in 2012, £20,000.131

7. matching new fleet size of 2 million vehicles [? ].132

nSMMT∑
j=1

npowertrain∑
i=1

xi,j
NV F

= 1; (8)

The influence of consumer behaviour change was simulated using two soft constraints: changing how133

far vehicles were driven; increasing the willingness to purchase more expensive vehicles with longer payback134

4Latest UK GDP deflator figures are available from HM Treasury at https://www.gov.uk/government/publications/

gdp-deflators-at-market-prices-and-money-gdp-march-2013
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times; or combining both into a third, hybrid approach. These three cases were compared to business as135

usual (BAU).136

New vehicles (up to three years old) travelled an average 16,000 km annually in 2012. By fuel type,137

new diesel and petrol vehicles travelled 21,000 km and 12,000 km, respectively. Most vehicles (all ages,138

fuels) drove 11,300 km annually in 2012 [? ]. In the model, petrol and diesel vehicle (conventional and139

hybridised) annual mileage was set to 12,000 km and 21,000 km, respectively. Fuel cell and electric vehicles140

were assumed to travel the average annual mileage of new vehicles at 16,000 km which is consistent with the141

findings in Shirk & Carlson, 2015 [? ]. Achieving fleets with a large proportion of novel vehicle powertrains,142

particularly EV and fuel cell vehicles, assumes widespread refuelling/recharging infrastructure exists.143

Across the total fleet, VKT decreased by 0.86% annually from 16,000 km in 1994 to 13,500 km in 2012144

(total 15%)5 In the optimisation, annual vehicle mileage could vary between that of new petrol vehicles and145

new diesel vehicles. Total VKT could be up to 0.86% lower that the 2012 value.146 (
1 − 0.86

100

)
· V KT ≤

nSMMT∑
j=1

npowertrain∑
i=1

vkti,j · xi,j ≤ V KT ; (9)

where: the product of vehicles in each SMMT segment and powertrain group, xi,j and the annual distance147

travelled per new vehicle, vkti,j could be up to 0.86% lower than the 2012 value of 32 billion VKT. The148

total VKT was calculated as:149

fuelk∑
k=1

xk.vktk (10)

where k=1 is for petrol and k=2 for diesel; xk represents new registered vehicles of fuel k in 2012; vktk150

represents annual distance travelled by new vehicles of fuel k. In 2012, there were 970,000 petrol vehicles151

and 1 million diesel vehicles registered for the first time [? ].152

Payback time was the second of the two soft constraints. Generally, consumers want fuel cost savings153

to offset the capital cost premium of a fuel efficient vehicle within the first two years of ownership [? ? ].154

The number and variety of HEV, PHEV, EV and other powertrain technologies in service currently suggests155

that some consumers accept longer payback times. The payback times for all vehicle powertrain types i per156

SMMT segment j were calculated as in Bishop et al. (2014) [? ] where payback time was the year that157

cumulative annual cash flows became positive. Payback time was set to the vehicle lifetime of eight years158

if cash flows never became positive. Fleet averaged payback time, PBT, could float between one and eight159

years, corresponding to the 2012 fleet average and the vehicle lifetime, respectively.160

nSMMT∑
j=1

npowertrain∑
i=1

pi,j · xi,j
NV F

= PBT ; (11)

5Compiled from UK Department for Transport Tables VEH0211 (https://www.gov.uk/government/

statistical-data-sets/veh02-licensed-cars) and TRA0201 (https://www.gov.uk/government/statistical-data-sets/

tra02-traffic-by-road-class-and-region-kms).
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where: pi,j is the payback time (years) for each vehicle.161

3.1. Sensitivity of optimum fleets to the policy objective162

The sensitivity of the new vehicle fleet composition was investigated for the four policy objectives to163

minimise, individually: TTW CO2 emissions; WTW CO2 emissions; energy use; and LAP emissions. Fo-164

cusing on the absolute value, instead of those normalised to distance travelled, ensured true reductions were165

achieved.166

3.1.1. Reduce TTW CO2 emissions167

Absolute CO2 emissions from cars and taxis declined by 0.95% annually from 75 Mt in 1999 to 67 Mt in168

2010. Over the same period, new vehicle sales declined from over 3.1 million per year to less than 2.5 million169

annually. However, the total vehicle fleet grew from 28 million to 34 million because vehicles remain in170

service longer now than before [? ].171

European legislation on CO2 emissions from passenger vehicles focuses on those at the tailpipe [? ]. By172

2015, the new passenger vehicle fleet TTW CO2 emissions should be 120 g/km, achieved by a combination173

of powertrain advances (to 130 g/km) and innovative technologies (the remaining 10 g/km to 120 g/km).174

In 2021, the limit falls to 95 g/km with indications of a limit of 68-78 g CO2/km in 20256.175

In 2012, the sales-weighted average TTW CO2 emissions from new passenger vehicles was 133 g CO2/km176

[? ]. The average emissions from new cars in Bishop et al. (2014) [? ] was 132 g CO2/km. The total177

absolute CO2 emissions of the 2012 and optimum fleets were 4.2 Mt and 4.5 Mt, respectively. The constraint178

to reduce absolute fleet TTW CO2 emissions was:179

nSMMT∑
j=1

npowertrain∑
i=1

ci,j · xi,j · vkti,j ≤ C · (1 − C RED); (12)

where: ci,j is the TTW CO2 emissions (g/km) from each vehicle; C is the absolute mass of CO2 emissions180

(g) from the fleet of new vehicles on the road in 2012; and C RED is the percentage reduction in absolute181

emissions required.182

3.1.2. Reduce WTW CO2 emissions183

The introduction of novel powertrains accompanies the use of alternative transport fuels. The well-to-184

tank (WTT) pathway for producing and delivering alternative fuels dominates the vehicle WTW energy185

use and emissions [? ? ? ? ? ]. In this work, powertrains use petrol, diesel, hydrogen and electricity.186

Best estimates of WTT impacts of delivering the first three fuels are given in Bishop et al. (2012) [? ].187

6Result of a vote in the European Parliament on 24 April 2013 and communicated by press re-

lease available online at http://www.europarl.europa.eu/news/en/news-room/content/20130422IPR07527/html/

Car-CO2-mapping-the-route-to-95g-and-beyond
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WTT impacts of electricity were 0.42 MJ (chemical energy in fossil-fuels combusted) and 120 g CO2 per188

MJ delivered to the charging station7 at a cost of £0.51/MJ8. The constraint to reduce absolute fleet WTW189

CO2 emissions was:190

nSMMT∑
j=1

npowertrain∑
i=1

wi,j · xi,j · vkti,j ≤ C · (1 − C RED); (13)

where: wi,j is the WTW CO2 emissions (g/km) from each vehicle.191

3.1.3. Reduce energy use192

Improving fuel economy of vehicles using conventional fuels can have a positive effect on CO2 emissions.193

Moreover, mandating an improvement to fuel economy can encourage the increase in supply of more fuel194

economical cars to the market. Therefore, complying with fuel economy legislation requires necessarily that195

losses and inefficiencies in the engine and powertrain be addressed explicitly. Current US legislation focuses196

on improving both fuel economy (reducing energy use) and reducing emissions [? ]. This contrasts the197

European approach which targets TTW CO2 emissions which are a consequence, rather than a cause, of198

high (conventional) fuel use.199

Total absolute energy use by the 2012 new passenger fleet was 5 PJ, with average normalised use of200

189 MJ/100 km9. Total absolute energy use and sales-weighted energy use per vehicle using vehicle models201

in Bishop et al. (2014) [? ] was 7.3 EJ and 233 MJ/100 km. The base case yielded total and sales-weighted202

energy use of 7.8 EJ and 230 MJ/100 km, respectively. The constraint to reduce absolute energy was:203

nSMMT∑
j=1

npowertrain∑
i=1

ei,j · xi,j · vkti,j ≤ E · (1 − E RED); (14)

where: ei,j is the energy used by each vehicle, MJ/100 km; E is average energy use by the fleet of new204

vehicles in 2012; and E RED is the percentage reduction in absolute energy use required.205

3.1.4. Reduce local air pollution206

Passenger vehicles are responsible for primary non-CO2 emissions, such as oxides of nitrogen (NOx) and207

particulate matter (PM2.5). These two pollutants have the largest direct impacts on human health [? ? ? ].208

7These figures correspond to the UK average. See Digest of United Kingdom energy statistics (DUKES) 2012 Tables 5.1 and

5.4 for total electricity generated and total fuel used, respectively. Carbon intensity of electricity fuel mix is available in Table

5A, DUKES 2012 Chapter 5. All available online at https://www.gov.uk/government/uploads/system/uploads/attachment_

data/file/65818/5955-dukes-2012-chapter-5-electricity.pdf.
8Average of electrical energy used by households in band DC (2,500 kWh < consumption < 5,000 kWh) in the UK in 2012,

all taxes included. Data available online in Table nrg pc 204 at epp.eurostat.ec.europa.eu/portal/page/portal/energy/

data/main_tables.
9See UK Department for Transport Table ENV0103 for sales-weighted fuel economy in 2011. Available online at https:

//www.gov.uk/government/statistical-data-sets/env01-fuel-consumption. 2012 fuel economy was taken as sales-weighted

fuel economy of petrols and diesels in the fleet in 2011 [? ].
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The key benefits of minimising LAP emissions arise from avoided premature deaths due to exposure to PM209

[? ]. In 2012, road transport accounted for 31% and 26% of combustion-related NOx and PM2.5 emissions,210

respectively. Passenger vehicles were responsible for 15% and 6.4%, respectively. Non-combustion related211

PM2.5 emissions for passenger vehicles accounted for 11% of total emissions (3.9% for road abrasion and212

7.5% for wear to tyres and brakes)10.213

Speed-dependent Euro V emissions factors for NOx [? ] and PM2.5 [? ] were used for petrol and diesel214

vehicles in this work. The speed used to calculate LAP emissions was 44 km/h. This was the weighted average215

of speeds based on VKT travelled per road type. Average road speeds for rural and urban/motorways were216

18 km/h and 63 km/h, respectively. These two road types counted for 42% and 58% of VKT. Additionally,217

the proportion of VKT travelled under urban, rural and motorway conditions was taken as 37%, 42% and218

21%, respectively [? ].219

LAP emissions factors are sparse for novel vehicle powertrains. Moreover, it cannot be assumed that220

HEV have lower emissions of air pollutants than conventional vehicles [? ]. However, scaling factors have221

been suggested for PHEV which account for the proportion of VKT travelled by road type under all-electric222

power: 0.1 for urban; 0.5 for rural and 0.9 for motorway, all relative to a Euro V petrol vehicle [? ]. Therefore,223

in this work, the conservative approach was adopted where emissions factors for HEV were unchanged from224

conventional vehicles and those from PHEV were scaled using the above factors. Also, the scaling factors225

are given for PM10 and were assumed to be valid for PM2.5 which is the focus of this work.226

Hydrogen- and electricity-fuelled vehicles were assumed to have zero TTW combustion-related LAP227

emissions on account of external fuel production. However, activity-related PM2.5 emissions arise from wear228

to brakes, tyres (0.0074 g PM2.5/km) and the road surface (0.0041 g PM2.5/km) [? ]. These emissions229

are independent of the vehicle powertrain technology and SMMT segment. The proportion of total PM2.5230

which was activity-related depended on the vehicle powertrain: 30% for diesel vehicles; 70% for DISI vehicles;231

90% for PISI vehicles; and 100% for hydrogen-fuelled and EV. The total suspended particles arising from232

non-combustion sources are dominated by PM10 which are not considered in this work.233

LAP emissions from passenger vehicles were 150 kt NOx and 4.3 kt PM2.5 in 2011 [? ]. However, no234

LAP emissions were available for the new vehicle fleet explicitly. Calculated emissions from new vehicles in235

Bishop et al. (2014) [? ] were 15 kt NOx (0.38 g/km) and 1 kt PM2.5 (0.028 g/km). The base case fleet236

emitted 16 kt NOx and 1.1 kt PM2.5. The constraints to reduce LAP emissions were:237

nSMMT∑
j=1

npowertrain∑
i=1

ni,j · xi,j · vkti,j ≤ N · (1 −N RED); (15)

10See National Emission Ceilings (NEC) Directive Inventory for NOx emissions (http://www.eea.europa.eu/data-and-maps/

data/data-viewers/emissions-nec-directive-viewer) and LRTAP Convention Inventory for PM2.5 emissions (http://www.

eea.europa.eu/data-and-maps/data/data-viewers/air-emissions-viewer-lrtap).
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where: ni,j = NOx or PM2.5 emissions from each vehicle, g/km; N = absolute NOx or PM2.5 emissions238

from the fleet of new vehicles on the road in 2012, g; and N RED is the proportional reductions in absolute239

emissions required.240

3.2. External fiscal incentives241

Sensitivity of the new vehicle fleet composition to external policies was investigated. Such policies are242

designed to encourage a greater shift to low emissions vehicles, while preserving consumer choice and fleet243

diversity. The first policy increased duty on fuel and the second policy introduced a feebate. These external244

incentives influence running costs and vehicle purchase price, respectively, and associated payback time.245

3.2.1. Increase fuel costs246

Increasing fuel taxes can achieve primary policy gains more quickly than new vehicle purchase incentives247

because fuel is used by operators of new and existing vehicles. Moreover, increased fuel costs encourage eco-248

driving behaviour to conserve fuel and leads both to reduced VKT and associated distance-related external249

costs [? ? ]. Retail fuel prices are a combination of resource price and tax. Tax comprised 57% of total fuel250

prices in the UK in 2012, down from its maximum of 75% in 2000 [? ]. The policy to increase fuel costs251

was implemented by raising taxes to the recent maximum of 75% of retail price. New retail prices at 75%252

taxes would be £2.4/l (£0.067/MJ) and £2.6/l (£0.072/MJ) for petrol and diesel, respectively. Electricity253

and hydrogen were exempt from tax increases.254

3.3. Duty on vehicles by CO2 emissions level255

An increase in taxes on petrol and diesel targets all vehicles using those fuels. Increasing fuel duties256

may have less effect on fuel economy because consumers undervalue fuel savings. Instead, a more effective257

approach may be to shift the price signal from the fuel to the vehicle [? ? ]. Annually, the UK collects a258

vehicle excise duty (VED) based on certified g CO2/km11. Vehicles are classified into emissions bands with259

associated duties. The lowest emitting vehicles receive a reward of no fees.260

A feebate system introduces capital cost subsidies for vehicles with emissions below a pivot (low-261

emissions) and additional fees for vehicles with emissions above the pivot. Such schemes provide consumers262

with options to downsize vehicle, shift powertrain technology and switch fuel [? ]. Feebates may be weighted263

according to vehicle attributes, such as mass [? ] or energy use [? ]. Some feebates have applied costs per264

unit fuel consumed [? ? ]. In this work, three pivots of 120 g/km, 95 g/km and 70 g/km were chosen,265

corresponding to the TTW CO2 emissions limits set by the EU, with costs applied to g CO2/km emissions266

of each vehicle.267

11See the Driver & Vehicle Licensing Agency Rates of vehicle tax. Available online at https://www.gov.uk/government/

uploads/system/uploads/attachment_data/file/175492/V149_rates_of_vehicle_tax.pdf.
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The aim of the feebate scheme was to be revenue-neutral and achieved using two costs per g CO2/km:268

the first was a rebate for low-emissions vehicles; and the second was a fee for high-emissions vehicles. The269

fees and rebates impacted ownership costs, payback time and the resulting composition of the optimum fleet.270

Therefore, the fees and rebates were not known a priori, but were limited to £100 per g CO2/km above271

and below the pivot, respectively. These fees align with EU penalties for excess emissions of up to e95 per272

g CO2/km [? ].The feebate was implemented in the model using an equality constraint for the product of273

vehicle number and cost per g CO2/km on either side of the pivot:274

nSMMT∑
j=1

npowertrain∑
i=1

feei,j · xfeei,j − rebatei,j · xrebatei,j = 0; (16)

where: feei,j = the fee applied to each g CO2/km which a vehicle emits above the pivot; rebatei,j = the275

rebate applied to each g CO2/km which a vehicle emits below the pivot; xfeei,j = the number of vehicles with276

emissions above the pivot; and xrebatei,j = the number of vehicles with emissions below the pivot.277

4. Results and discussion278

The model was validated by running the BAU case with no reductions in energy use or emissions and279

comparing the result to the 2012 fleet. Figure ??a illustrates the distribution of vehicles by SMMT segment280

in the validated fleet (blue) and the 2012 fleet (yellow). This validated fleet was the base case against which281

the model outputs under various policy objectives were compared. There was no error between the 2012

Figure 2: Verification of optimisation model against 2012 new vehicle data to create base case: a) number of new vehicles sold

by SMMT segment (yellow bars) [? ] and optimised fleet (blue bars); b) number of new vehicles sold by powertrain group

(yellow bars) and optimised fleet (blue bars) [? ]. Label subscripts: p = petrol; and d = diesel.

282

fleet and base case by SMMT segment. Figure ??b highlights the distribution of powertrains in the 2012283

fleet. There were 17% fewer petrol conventional vehicles in the base case than in 2012, offset by an increase284
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in diesel conventional vehicles and petrol HEV. The difference in energy use and emissions, total or per km,285

was less than 10% between the 2012 fleet and base case.286

There are three main results which are discussed. First, the impact of policy objectives on the composition287

of the optimum new vehicle fleet under BAU and consumer behaviour changes. Second, the proportion of288

total fleet VKT as a function of SMMT segment and powertrain type and its relation to absolute energy289

use and associated emissions. Finally, the influence of BAU and consumer behaviour changes on diversity290

of the fleet by SMMT segment and powertrain group.291

4.1. Impact of policy objectives on new passenger vehicle fleet composition292

4.1.1. Fleet composition by SMMT segment293

Across the policy objectives excluding feebates, the optimum fleets comprised over half small vehicles294

(median 53%), represented by dark blue bars in Figure ??. The extent of fleet downsizing is represented by295

the magnitude of dark and light blue bars of small and medium vehicles respectively, relative to the yellow296

and green bars of utility and specialist vehicles, respectively. Excluding feebates, the market share of small297

vehicles increased 8-10% in the optimum fleet under BAU or when changing VKT only. For BAU, meeting298

the individual policy objectives was possible with vehicle downsizing only because VKT and payback times299

were fixed at base case values. Therefore, the downsizing was accompanied by a 9% shift to utility vehicles300

to maintain fleet average values. Changing VKT introduced a multiplicative effect on absolute energy use301

and emissions which mitigated the need for extensive downsizing. The concentration of small vehicles was302

largest when increasing payback time alone, or as part of the hybrid approach. Here, small and utility303

vehicles comprised a median 55% and 26%, respectively, of the new fleet.304

Including feebates enhanced the downsizing influences of the consumer behaviour changes described,305

except with the hybrid approach. Under BAU and when increasing payback time only, a median 82% of306

the fleet was small vehicles. The distribution of vehicles by SMMT segment changed least, relative to BAU,307

using feebates under the hybrid approach: there was a marginal (median 4%) increase in the proportion of308

small vehicles in the fleet, achieved at the expense of the other groups.309

4.1.2. Fleet composition by powertrain type310

Uptake of novel vehicle powertrains occurred for all policy objectives where vehicle payback time changed,311

due either to the supply push of feebates or the demand pull of consumers through behaviour change. The312

changes are illustrated in Figure ?? by a shift away from the black and brown bars representing conventional313

powertrains using petrol and diesel respectively, to the red, orange and yellow bars for HEV, PHEV and314

fuel cell vehicles, respectively.315

Payback time did not increase under BAU or when changing VKT only. Therefore, the technology shift316

was limited to the fuels used in conventional powertrains: petrol and diesel. Under BAU, the proportion of317
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Figure 3: Bar chart showing the market share of vehicles by SMMT in the new fleets under: a) business as usual (BAU); b)

changing VKT only; c) increasing payback time only; and d) the hybrid approach. Policy key: 1 = minimising TTW CO2

emissions; 2 = minimising WTW CO2 emissions; minimising energy use; 4 = minimising LAP emissions; 5 = increase fuel

duties; 6 = introduce feebate with 120 g CO2/km pivot; 7 = introduce a feebate with 95 g CO2/km pivot; and 8 = introduce

a feebate with 70 g CO2/km pivot. Bar colour key: dark blue = small vehicles (mini and super mini); light blue = medium

vehicles (lower medium and upper medium); green = specialist vehicles (executive, luxury and sports); and yellow = utility

vehicles (SUV and MPV).
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petrol and diesel vehicles was almost equal. Changing VKT only resulted in a ‘re-petrolisation’ of the fleet,318

with only 9% of vehicles using diesel now.319

Introducing feebates distorted changes in consumer behaviour such that the largest shift to novel pow-320

ertrains occurred under BAU and when increasing payback time only. Now, there were no conventional321

powertrains using petrol and 68% of new vehicles used novel powertrains. Moreover, fuel cell vehicles ac-322

counted for 49% of the new fleet alone. The influence of changing VKT on absolute energy use and emissions323

reduced the need for technology switching. Changing VKT only required 26% of the new fleet to use novel324

powertrains, decreasing to 10% under the hybrid approach when consumers increased their willingness to325

accept longer payback times also.326

The length of the bars representing novel vehicle powertrains in the presence of feebates, either under327

BAU or when increasing payback time only, demonstrated direct capital cost interventions are necessary to328

displace a significant proportion of conventional powertrains. However, capital cost subsidies are insufficient329

to cause a large shift to low-emitting vehicles: the additional power of the feebate is to raise the purchase330

price of high-emitting vehicles ones. In this case, median rebates of £100 per g CO2/km for low-emitting331

vehicles were paired with median fees of £29 per g CO2/km on high-emitting vehicles. Fuel duty increases332

did not influence the proportion of novel powertrains more than the other policy scenarios. The data in333

Figure ?? is given in Tables ?? and ??.334

4.2. Impact of policy objectives on fleet VKT, energy use and emissions335

Figure ?? illustrates the proportion of fleet VKT for vehicles by SMMT segment across the eight policy336

objectives. Excluding feebates, the heights of the bars in the small vehicle SMMT group under BAU highlight337

the need, not only to downsize the fleet, but to ensure that those small vehicles account for a large proportion338

of the total VKT (median 60%). This observation holds true even when novel powertrains enter the fleet.339

For example, a median 53% and 65% of fleet VKT was met by small vehicles when increasing payback time340

only or under the hybrid approach, respectively. In contrast, changing VKT mitigates the extent of both341

technology switching and fleet downsizing, as shown by the distribution of bars in Figures ??b, where small342

vehicles met 50% of fleet VKT.343

Including feebates, small vehicles were responsible for a median 83% of fleet VKT under BAU and when344

increasing payback time only. Additionally, novel powertrains accounted for 54% of fleet VKT, dominated345

by HEV at 24% and fuel cell vehicles at 17% in both cases. Using feebates under the hybrid approach led346

to small vehicles providing only 36% of fleet VKT. Moreover, 79% (26% petrol and 53% diesel) of vehicles347

in the optimum fleet used conventional powertrains. Full data used in this figure is available in Tables ??348

and ??.349

Excluding feebates, absolute energy use and CO2 emissions decreased with increasing consumer behaviour350

change, relative to BAU (dark blue). The incremental reduction in energy use and CO2 emissions grew when351
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c) Increase payback time only
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Figure 4: Bar chart showing the market share of vehicles by powertrain type in the new fleets under: a) business as usual

(BAU); b) changing VKT only; c) increasing payback time only; and d) the hybrid approach. Policy key: 1 = minimising TTW

CO2 emissions; 2 = minimising WTW CO2 emissions; minimising energy use; 4 = minimising LAP emissions; 5 = increase fuel

duties; 6 = introduce feebate with 120 g CO2/km pivot; 7 = introduce a feebate with 95 g CO2/km pivot; and 8 = introduce

a feebate with 70 g CO2/km pivot. Colour code: black = conventional petrol; brown = conventional diesel; red = petrol and

diesel HEV; orange = petrol and diesel PHEV; yellow = fuel cell HEV and PHEV; and white = EV.
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b) Changing VKT only 
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d) Hybrid approach 
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Figure 5: Stacked bar graphs representing the proportion of fleet VKT (product of number of vehicles and VKT per vehicle)

per SMMT segment for the eight scenarios under a) business as usual; b) when changing VKT only; c) when increasing payback

time only; and d) the hybrid approach. Colour code: black = conventional petrol; brown = conventional diesel; red = petrol

and diesel HEV; orange = petrol and diesel PHEV; yellow = fuel cell HEV and PHEV; and white = EV.
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payback time was increased, either alone (green) or as part of the hybrid approach (yellow). The hybrid352

approach returned the largest changes to energy use and CO2 emissions. These optimum fleets had the353

largest proportion of small vehicles (median 56%) and novel powertrains (median 41%), particularly fuel cell354

vehicles (median 20%) with zero tailpipe emissions. BAU returned the smallest change in LAP emissions355

generally. Small vehicles accounted for 49% of the new fleet. However, there was only a 14% shift towards356

petrol from diesel in the conventional powertrains. Consequently, diesel accounted for 49% of new vehicles357

with their significantly larger LAP emissions. Recall Euro V diesel vehicles emit 50 times more NOx emissions358

and five times more PM2.5 emissions, than spark ignition petrol vehicles.359

Changing VKT returned the smallest changes in absolute energy use and CO2 emissions. These optimum360

fleets comprised the lowest proportion of small vehicles (median 48%) and highest proportion of conventional361

powertrains using petrol (91%) across the SMMT segments. Therefore, the ‘re-petrolisation’ of the fleet362

allowed this consumer behaviour change to return the largest fall in LAP emissions in general: NOx emissions363

by a median 85%; and PM2.5 emissions by a median 70%.364

Including feebates, the largest median reductions in energy use and emissions of CO2, NOx and PM2.5,365

at 46%, 72%, 57% and 36%, respectively, was achieved under BAU and when increasing payback time only.366

These fleets comprised 82% small vehicles and 68% vehicles using novel powertrains (including 49% fuel367

cells). Median fees of £79-99 per g CO2/km across the pivots were required to reduce the attractiveness of368

high-polluting vehicles and push uptake of low-polluting vehicles. The fees were effective enough that there369

was no median rebate supplied for the higher feebate pivots. The 70 g CO2/km pivot required rebates of370

£45 per g CO2/km.371

The hybrid approach, with low median fees (£29) and high rebates (£100) was least able to reduce energy372

use and emissions across the policy objectives on account of the smallest proportion of both small vehicles373

(median 43%) and novel powertrains (median 10%). Fees may have disproportionate impact on consumer374

choice when there is no willingness to accept longer payback times. Across Europe, Mock (2015) observed375

that tax thresholds for CO2 emissions are effective at steering consumer choice, leading to the purchase of376

new vehicles with emissions which take advantage of the reduced fees [? ].377

The bars in Figures ?? and ?? summarise the change in absolute energy use and associated emissions378

under BAU and with consumer behaviour changes across the policy objectives. Data related to these figures379

is given in Tables ?? and ??.380

4.3. Effects of policy objectives on the diversity of vehicle fleet by SMMT segment and powertrain type381

In general, there was a trade-off in diversity of the fleet by SMMT segment and powertrain group when382

achieving the policy objectives, as shown in Figure ??a.383

Figure ??b highlights the trade-off in diversity by SMMT segment and powertrain group under BAU384

(magenta) and with consumer behaviour changes (blue, green and red). The influence of the policy objectives385
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c) Reduce energy use
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d) Reduce LAP emissions

Figure 6: Percentage change in energy use and emissions of CO2 and LAP for the policy objectives to minimise: a) TTW CO2

emissions; b) WTW CO2 emissions; c) energy use; and d) LAP emissions. Colour key: dark blue = business as usual; light

blue = reduce VKT only; green = increase payback time only; and yellow = hybrid approach.
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a) Increase fuel duty
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b) Feebate at 120g/km pivot
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c) Feebate at 95g/km pivot
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d) Feebate at 70g/km pivot

Figure 7: Percentage change in energy use and emissions of CO2 and LAP for the policy objectives to minimise TTW CO2

emissions in the presence of: a) increased fuel duties; b) feebate with a 120 g CO2/km pivot; c) feebate with a 95 g CO2/km

pivot; and d) feebate with a 70 g CO2/km pivot. Colour key: dark blue = business as usual; light blue = reduce VKT only;

green = increase payback time only; and yellow = hybrid approach.
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Figure 8: Scatter plot of SMMT segment diversity against technology diversity under BAU and consumer behaviour changes for

each policy objective, with and without external incentives. Subplot a) colour key: black cross = diversity of 2012 real-world

fleet; blue square = minimising TTW CO2 emissions; red diamond = minimising WTW CO2 emissions; green triangle =

minimising energy use; cyan circle = minimising LAP emissions; magenta right triangle = increasing fuel duties; black left

triangle = feebate with 120 g CO2/km pivot; black square = feebate with 95 g CO2/km pivot; and black diamond = feebate

with 70 g CO2/km pivot . Subplots b) colour key: blue = reducing VKT only; green = increasing payback time only; red =

hybrid approach; and magenta = business as usual.

was seen most in four clusters. The first cluster represented BAU and changing VKT only (blue), excluding386

feebates. These fleets were the most specialised by powertrain type – conventional only – and returned387

the largest reductions in LAP emissions when changing VKT only. The only optimum fleet with higher388

diversity (1.8) by SMMT segment than the base case was achieved when minimising TTW CO2 emissions389

by changing VKT only (blue square to the right of the vertical dotted line).390

The second cluster represented the optimum fleets using feebates with a 95 g CO2/km pivot when391

changing VKT only (blue squares) and under the hybrid approach (red squares) and using a feebate with392

70 g CO2/km pivot under the hybrid approach (red diamond). These three fleets were dominated by vehicles393

with conventional powertrains (86-91%), with the remainder spread over three groups of novel powertrains.394

Diversity was 4-7 times higher than the base case at 0.4-0.6.395

The third cluster contained fleets where diversity by powertrain group increased 11-17 times to 0.8-1.1396

and occurred when payback time was increased, either alone (green) or part of a hybrid approach (red)397

across the policy objectives, excluding feebates. Under feebates, optimum fleets in this cluster existed with398

pivots at 120 g CO2/km (changing VKT only and hybrid approach) and 70 g CO2/km (changing VKT only399

and increasing payback time only).400

The fleets forming the fourth cluster were the most downsized and displayed significantly lower diversity401

by SMMT segment, at 0.8-1. This cluster comprised the BAU fleets across all feebate pivots and those from402

pivots at 120 g CO2/km and 95 g CO2/km when increasing payback time only. The fall in diversity by SMMT403
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segment was balanced by increased diversity by powertrain type: these fleets displayed the highest diversity404

across all the clusters (at 1.3) by consisting of four powertrain groups, with no single group accounting for405

more than 40% of new vehicles.406

The fleets in the second and third clusters provide a good balance in diversity between SMMT segment407

and powertrain group. However, the number of SMMT segments with vehicles falls for slight changes in408

diversity. For example, diversity of 1.5 may have vehicles in only five of nine segments. Diversity of 1.6409

returns vehicles in six of nine segments. Therefore, maximising the number of segments available for choice410

requires diversity of 1.7 which is equal to the base case.411

Introducing a feebate with pivot at 120 g CO2/km (fees of £100 per g CO2/km and rebates of £9 per412

g CO2/km) in combination with changing VKT only (blue left triangle in the third cluster) returned the413

largest increase in diversity by powertrain type for the smallest reduction in diversity by SMMT segment.414

Balancing the diversity of the fleet in these dimensions maximises the number of vehicles sizes and powertrain415

types available and may be the most attractive to consumers. The result was a median 28% reduction in416

energy use and leading to emissions of CO2, NOx and PM2.5 falling by 49%, 70% and 41%, respectively.417

This ideal fleet comprised a 14% increase in the market share of small vehicles and a 2:1 ratio of conventional418

to novel (HEV and fuel cell HEV) powertrains. Data on diversity of the optimum fleets by SMMT segment419

and powertrain group is given in Tables ?? and ??.420

5. Conclusions421

This work presents a co-optimisation of vehicle segment, powertrain type and activity to account explic-422

itly for fleet downsizing, technology switching and changes in demand. It integrates a top-down, diversity423

led approach to fleet composition with bottom-up, vehicle powertrain models to give a rich option set for sat-424

isfying consumer choice. The impact of this model is a framework to quantify the effect of policy objectives425

on the composition of an optimum new vehicle fleet.426

Fleet downsizing was required in all cases, and when combined with novel vehicle powertrains and reduced427

activity, returned the largest reductions in energy use and CO2 emissions. The extent of fleet downsizing428

was mitigated when changing VKT only because the multiplicative effect of activity on absolute energy use429

and emissions was exploited to offset vehicle size. Therefore, the composition of optimum fleets by SMMT430

segment was closest to the base case. Moreover, these fleets comprised all conventional powertrains to return431

the smallest reductions in absolute energy use and CO2 emissions. However, LAP emissions fell the most432

(NOx at 85% and PM2.5 at 70%) under this consumer behaviour change case. Technology switching in433

these optimum fleets took the form of fuels used, shifting from diesel back to petrol. This ‘re-petrolisation’434

minimised the proportion of diesel vehicles (median 9%) to reduce combustion-related emissions of NOx and435

PM2.5 by 50 times and five times, respectively. Finally, changing VKT only addressed the effect of activity436
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on absolute LAP emissions, especially the road, brake and tyre wear associated with PM2.5 emissions.437

Introducing feebates maximised reductions in energy use and associated emissions for the least change in438

consumer behaviour. The resulting fleets were the most downsized (and specialised by SMMT group with439

median 82% small vehicles). However, the fleets were the most diverse in the number of novel powertrains440

present as a consequence of the large fees (£79-99 per g CO2/km away from the pivot) placed on high-441

emitting vehicles. Such external policies may demonstrate how far energy use and emissions might be442

reduced in new fleets. Equally, such specialised fleets may be unachievable because they fail to satisfy the443

broad range of consumers’ preferences.444

The most balanced fleet by diversity occurred with a combination of consumer behaviour change and445

external incentive: by changing VKT only in the presence of a feebate with 120 g CO2/km pivot. Here, high446

emitting vehicles were penalised at £100 per g CO2/km which encouraged novel powertrains into the mix.447

Changing vehicle activity mitigated the need for large-scale downsizing of the fleet which allowed vehicles448

across a range of segments.449

This work is set in 2012 to maintain temporal consistency across the data sets and avoid wide-ranging450

assumptions on future technology performance, costs and consumer preferences. Moreover, the equality451

constraints on the model to meet fleet averaged physical and cost attributes limits the solution set. Op-452

timising vehicle number, size, powertrain type and VKT across nine SMMT segments and 23 powertrain453

types simultaneously yielded rich results. This work can be extended in two ways: first, the vehicle option454

set can be expanded to include more novel powertrain types and vehicles using novel transport fuels, vehi-455

cle performance over different driving cycles and different vehicle attributes within SMMT segments; and456

second, the number of consumer behaviour changes can be increased to account for a change in preferences457

for vehicle attributes.458

By April 2016, 162 countries (Parties) had promised to reduce their national GHG emissions following459

the 2015 Paris Climate Conference12. At the same time as trying to reduce GHG emissions, annual global460

passenger vehicle sales increased from 66 million in 2005 to 90 million in 2015. Motorisation rates (number461

of vehicles per thousand inhabitants) over the same period rose fastest in Asia, Central and South America462

and Africa13. Therefore, this work may be used by Governments and policy-makers to determine how they463

can accommodate both the increase in vehicles circulating and the pledges to reduce GHG emissions. Addi-464

tionally, original equipment manufacturers (OEM) may take advantage of the bottom-up vehicle powertrain465

simulation inputs to quantify the influence of consumer behaviour change, external incentives and policy466

objectives on uptake of their technologies.467

12A register of Intended Nationally Determined Contributions (INDCs) is available from the United Nations Framework

Convention on Climate Change at unfccc.int/focus/indc_portal/items/8766.php.
13Global statistics from the International Organization of Motor Vehicle Manufacturers, available online at www.oica.net.

25

unfccc.int/focus/indc_portal/items/8766.php
www.oica.net


6. Acknowledgements

The authors acknowledge the EPSRC funding provided for this work under the Centre for Sustainable

Road Freight Transport (EP/K00915X/1) and the Energy Efficient Cities Initiative (EP/F034350/1).

7. References

[1] R. Edwards, et al., Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Tech.

Rep. 4.a, European Commission Joint Research Centre (March 2014).

URL http://iet.jrc.ec.europa.eu/about-jec/sites/iet.jrc.ec.europa.eu.about-jec/files/documents/wtw_

report_v4a_march_2014_final.pdf

[2] UK, Climate Change Act 2008, Act of parliament, HM UK Government (2008).

[3] B. M. Al-Alawi, T. H. Bradley, Review of hybrid, plug-in hybrid, and electric vehicle market modelling Studies, Renewable

and Sustainable Energy Reviews 21 (2013) 190–203. doi:10.1016/j.resr.2012.12.048.

[4] C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal 27 (3) (1948) 379–423. doi:

10.1002/j.1538-7305.1948.tb01338.x.

[5] D. L. Greene, TAFV Alternative Fuels and Vehicles Choice Model Documentation, no. ORNL/TM-2001/134, Oak Ridge

National Laboratory, 2001.

URL www-cta.ornl.gov/cta/Publications/Reports/ORNL_TM_2001_134.pdf

[6] D. J. Santini, A. D. Vyas, Suggestions for a New Vehicle Choice Model Simulating Advanced Vehicles Introduction

Decisions (AVID): Structure and Coefficients, no. ANL/ESD/05-1, Argonne National Laboratory, 2005.

URL http://www.anl.gov/energy-systems/publication/suggestions-new-vehicle-choice-model-simulating-advanced-vehicles

[7] Z. Lin, D. Greene, Who Will More Likely Buy PHEV: A Detailed Market Segmentation Analysis, in: 25th World Battery,

Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition (EVS-25), Shenzhen, 2010.

URL http://info.ornl.gov/sites/publications/Files/Pub32208.pdf

[8] J. D. K. Bishop, N. P. D. Martin, A. M. Boies, Cost-effectiveness of alternative powertrains for reduced energy use and

CO2 emissions in passenger vehicles, Applied Energy 124 (2014) 44–61. doi:10.1016/j.apenergy.2014.02.019.

[9] D. McCollum, C. Yang, Achieving deep reductions in US transport greenhouse gas emissions: Scenario analysis and policy

implications, Energy Policy 37 (12) (2009) 5580–5596. doi:10.1016/j.enpol.2009.08.038.

[10] K. Bodek, J. Heywood, Europe’s Evolving Passenger Vehicle Fleet: Fuel Use and GHG Emissions Scenarios through 2035,

LFEE 2008-03 RP, Laboratory for Energy and the Environment, Massachusetts Institute of Technology, Cambridge, MA,

2008.

URL http://web.mit.edu/sloan-auto-lab/research/beforeh2/files/Europe’s%20Evolving%20Passenger%20Vehicle%

20Fleet.pdf

[11] X. Ou, X. Zhang, S. Chang, Scenario analysis on alternative fuel/vehicle for China’s future road transport: Life-cycle

energy demand and GHG emissions, Energy Policy 38 (8) (2010) 3943–3956. doi:10.1016/j.enpol.2010.03.018.

[12] M. Ichinohe, E. Endo, Analysis of the vehicle mix in the passenger-car sector in Japan for CO2 emissions reduction by a

MARKAL model, Applied Energy 83 (10) (2006) 1047–1061. doi:10.1016/j.apenergy.2005.08.002.

[13] C. Thiel, A. Perujo, A. Mercier, Cost and CO2 aspects of future vehicle options in Europe under new energy policy

scenarios, Energy Policy 38 (11) (2010) 7142–7151. doi:10.1016/j.enpol.2010.07.034.

[14] M. Kloess, A. Müller, Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in

Austria – A model based analysis 2010-2050, Energy Policy 39 (9) (2011) 5045–5062. doi:10.1016/j.enpol.2011.06.008.

26

http://iet.jrc.ec.europa.eu/about-jec/sites/iet.jrc.ec.europa.eu.about-jec/files/documents/wtw_report_v4a_march_2014_final.pdf
http://iet.jrc.ec.europa.eu/about-jec/sites/iet.jrc.ec.europa.eu.about-jec/files/documents/wtw_report_v4a_march_2014_final.pdf
http://iet.jrc.ec.europa.eu/about-jec/sites/iet.jrc.ec.europa.eu.about-jec/files/documents/wtw_report_v4a_march_2014_final.pdf
http://dx.doi.org/10.1016/j.resr.2012.12.048
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
www-cta.ornl.gov/cta/Publications/Reports/ORNL_TM_2001_134.pdf
http://www.anl.gov/energy-systems/publication/suggestions-new-vehicle-choice-model-simulating-advanced-vehicles
http://www.anl.gov/energy-systems/publication/suggestions-new-vehicle-choice-model-simulating-advanced-vehicles
http://www.anl.gov/energy-systems/publication/suggestions-new-vehicle-choice-model-simulating-advanced-vehicles
http://info.ornl.gov/sites/publications/Files/Pub32208.pdf
http://info.ornl.gov/sites/publications/Files/Pub32208.pdf
http://dx.doi.org/10.1016/j.apenergy.2014.02.019
http://dx.doi.org/10.1016/j.enpol.2009.08.038
http://web.mit.edu/sloan-auto-lab/research/beforeh2/files/Europe's%20Evolving%20Passenger%20Vehicle%20Fleet.pdf
http://web.mit.edu/sloan-auto-lab/research/beforeh2/files/Europe's%20Evolving%20Passenger%20Vehicle%20Fleet.pdf
http://web.mit.edu/sloan-auto-lab/research/beforeh2/files/Europe's%20Evolving%20Passenger%20Vehicle%20Fleet.pdf
http://dx.doi.org/10.1016/j.enpol.2010.03.018
http://dx.doi.org/10.1016/j.apenergy.2005.08.002
http://dx.doi.org/10.1016/j.enpol.2010.07.034
http://dx.doi.org/10.1016/j.enpol.2011.06.008


[15] C. Thiel, J. Schmidt, A. V. Zyl, E. Schmid, Cost and well-to-wheel implications of the vehicle fleet CO2 emission regulation

in the European Union, Transportation Research Part A: Policy and Practice 63 (2014) 25–42. doi:10.1016/j.tra.2014.

02.018.

[16] S. Skippon, S. Veeraraghavan, H. Ma, P. Gadd, N. Tait, Combining technology development and behaviour change to

meet CO2 cumulative emission budges for road transport: Case studies for the USA and Europe, Transportation Research

Part A: Policy and Practice 46 (9) (2012) 1405–1423. doi:10.1016/j.tra.2012.05.021.

[17] V. J. Karplus, S. Paltsev, M. Babiker, J. M. Reilly, Should a vehicle fuel economy standard be combined with an economy-

wide greenhouse gas emissions constraint? Implications for energy and climate policy in the United States, Energy

Economics 36 (2013) 322–333. doi:10.1016/j.eneco.2012.09.001.

[18] C. Chavez-Baeza, C. Scheinbaum-Pardo, Sustianable passenger road transport scenarios to reduce fuel consumption,

air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area, Energy 66 (2014) 624–634.

doi:10.1016/j.energy.2013.12.047.

[19] A. Gambhir, L. K. C. Tse, D. Tong, R. Martinez-Botas, Reducing China’s road transport sector CO2 emissions to 2050:

Technologies, costs and decomposition analysis, Applied Energy In Press, Corrected Proof. doi:10.1016/j.apenergy.

2015.01.018.

[20] G. Pasaoglu, M. Honselaar, C. Thiel, Potential vehicle fleet CO2 reductions and cost implications for various vehicle

technology deployment scenarios in Europe, Energy Policy 40 (2012) 404–421. doi:10.1016/j.enpol.2011.10.025.

[21] S. Musti, K. M. Kockelman, Evolution of the household vehicle fleet: Anticipating fleet composition, PHEV adoption

and GHG emissions in Austin, Texas, Transportation Research Part A: Policy and Practice 45 (8) (2011) 707–720.

doi:10.1016/j.tra.2011.04.011.

[22] T. Oxley, A. Elshkaki, L. Kwiatkowski, A. Castillo, T. Scarbrough, H. ApSimon, Pollution abatement from road transport:

cross-sectoral implications, climate co-benefits and behavioural change, Environmental Science & Policy 19-20 (2012) 16–

32. doi:10.1016/j.envsci.2012.01.004.

[23] C. Yang, D. McCollum, R. McCarthy, W. Leighty, Meeting an 80% reduction in greenhouse gas emissions from trans-

portation by 2050: A case study in California, Transport Research Part D: Transport and Environment 14 (3) (2009)

147–156. doi:10.1016/j.trd.2008.11.010.

[24] A. Boies, S. Hankey, D. Kittelson, J. D. Marshall, P. Nussbaum, W. Watts, E. J. Wilson, Reducing Motor Vehicle

Greenhouse Gas Emissions in a Non-California State: A Case Study of Minnesota , Environmental Science & Technology

43 (23) (2009) 8721–8729. doi:10.1021/es902019z.

[25] J. K. Stanley, D. A. Hensher, C. Loader, Road transport and climate change: Stepping off the greenhouse gas, Transporta-

tion Research Part A: Policy and Practice Research Part A 45 (10) (2011) 1020–1030. doi:10.1016/j.tra.2009.04.005.

[26] A. L. Bristow, M. Tight, A. Pridmore, A. D. May, Developing pathways to low carbon land-based passenger transport in

Great Britain by 2050, Energy Policy 36 (9) (2008) 3427–3435. doi:10.1016/j.enpol.2008.04.029.

[27] I. Meyer, S. Wessely, Fuel efficiency of the Austrian passenger vehicle fleet – Analysis of trends in the technological profile

and related impacts on CO2 emissions, Energy Policy 37 (10) (2009) 3779–3789. doi:10.1016/j.enpol.2009.07.011.

[28] T. Litman, Comprehensive evaluation of energy conservation and emission reduction policies, Transportation Research

Part A: Policy and Practice 47 (2013) 153–166. doi:10.1016/j.tra.2012.10.022.

[29] D. A. Hensher, Climate change, enhanced greenhouse gas emissions and passenger transport – What can we do to make a

difference?, Transport Research Part D: Transport and Environment 13 (2) (2008) 95–111. doi:10.1016/j.trd.2007.12.

003.

[30] W. R. Morrow, K. S. Gallagher, G. Collantes, H. Lee, Analysis of policies to reduce oil consumption and greenhouse-gas

emissions from the US transportation sector, Energy Policy 38 (3) (2010) 1305–1320. doi:10.1016/j.enpol.2009.11.006.

[31] SMMT, New car CO2 report 2014: The 13th report, Tech. rep., The Society of Motor Manufacturers and Traders, London

27

http://dx.doi.org/10.1016/j.tra.2014.02.018
http://dx.doi.org/10.1016/j.tra.2014.02.018
http://dx.doi.org/10.1016/j.tra.2012.05.021
http://dx.doi.org/10.1016/j.eneco.2012.09.001
http://dx.doi.org/10.1016/j.energy.2013.12.047
http://dx.doi.org/10.1016/j.apenergy.2015.01.018
http://dx.doi.org/10.1016/j.apenergy.2015.01.018
http://dx.doi.org/10.1016/j.enpol.2011.10.025
http://dx.doi.org/10.1016/j.tra.2011.04.011
http://dx.doi.org/10.1016/j.envsci.2012.01.004
http://dx.doi.org/10.1016/j.trd.2008.11.010
http://dx.doi.org/10.1021/es902019z
http://dx.doi.org/10.1016/j.tra.2009.04.005
http://dx.doi.org/10.1016/j.enpol.2008.04.029
http://dx.doi.org/10.1016/j.enpol.2009.07.011
http://dx.doi.org/10.1016/j.tra.2012.10.022
http://dx.doi.org/10.1016/j.trd.2007.12.003
http://dx.doi.org/10.1016/j.trd.2007.12.003
http://dx.doi.org/10.1016/j.enpol.2009.11.006


(March 2014).

[32] RAC, RAC Cost of Motoring Index 2011, RAC, 2011.

URL www.rac.co.uk/pdfs/report-on-motoring/rac-cost-of-motoring-index-2011.aspx

[33] DfT, Transport Statistics Great Britain, United Kingdom Department for Transport, London, 2012.

URL https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/71279/tsgb-2012.pdf

[34] USDOE, Clean Cities Alternative Fuel Price Report, US Department of Energy, Washington DC, 2013.

URL www.afdc.energy.gov/uploads/publication/alternative_fuel_price_report_jan_2013.pdf

[35] A. Rogozhin, M. Gallaher, W. McManus, Automobile Industry Retail Price Equivalent and Indirect Cost Multipliers, no.

TRI 0211577.002.004, US Environmental Protection Agency, 2009.

URL http://www.epa.gov/otaq/ld-hwy/420r09003.pdf

[36] DfT, Transport Statistics Great Britain, United Kingdom Department for Transport, London, 2014.

URL https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/389596/

tsgb-2014-print-ready-version.pdf

[37] DfT, National Travel Survey: Statistical Release, Department for Transport, London, 2014.

URL https://www.gov.uk/government/collections/national-travel-survey-statistics

[38] M. Shirk, B. Carlson, eVMT analysis of on-road data from plug-in hybrid electric and all-electric vehicles, Tech. rep.,

Idaho National Laboratory (2015).

URL http://avt.inel.gov/pdf/prog_info/HybridSymposium2015CarlsonShirk.pdf

[39] J. King, The King Review of low-carbon cars (Part I: the potential for CO2 reduction), HM Treasury, 2007.

[40] National Travel Survey: Statistical Release, Department for Transport, London, 2012.

URL https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/35738/nts2011-01.pdf

[41] EC, Setting emission performance standards for new passenger cars as part of the Community’s integrated approach to

reduce CO2 emissions from light-duty vehicles, no. 443/2009, Official Journal of the European Union, 2009.

[42] SMMT, Motor Industry Facts 2013, London, 2013.

URL http://www.smmt.co.uk/wp-content/uploads/SMMT-2013-Motor-Industry-Facts-guide.pdf?9b6f83
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Table A.4: Proportion of total fleet VKT by SMMT group and powertrain group (bar colours) for business as usual and

changing VKT only across the policy objectives: 1 = minimise TTW CO2 emissions; 2 = minimise WTW CO2 emissions; 3 =

minimise energy use; 4 = minimise LAP emissions; 5 = increase fuel duties; 6 = introduce feebates at 120 g CO2/km pivot; 7

= introduce feebates at 95 g CO2/km pivot ; and 8 = introduce feebates at 70 g CO2/km pivot.

Base Business as usual Changing VKT only

Vehicle group 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Small

Petrol 29 14 4 21 17 24 0 0 0 62 59 26 48 49 12 30 24

Diesel 0 55 59 27 44 17 29 29 17 0 0 16 0 1 3 0 4

HEV 0 0 0 0 0 0 24 24 28 0 0 0 0 0 41 1 11

PHEV 0 0 0 0 0 0 13 13 30 0 0 0 0 0 0 4 13

Fuel cell vehicles 0 0 0 0 0 0 17 17 0 0 0 0 0 0 0 0 0

EV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Medium

Petrol 0 6 10 1 1 0 0 0 0 9 31 0 34 5 2 0 0

Diesel 41 4 0 32 0 34 0 0 0 10 0 43 5 27 9 43 25

HEV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PHEV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4

Fuel cell vehicles 0 0 0 0 0 0 17 17 25 0 0 0 0 0 13 1 5

EV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Specialist

Petrol 0 3 5 2 8 5 0 0 0 6 3 3 0 5 0 0 0

Diesel 11 0 0 2 3 0 0 0 0 0 0 0 3 0 0 5 0

HEV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PHEV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Fuel cell vehicles 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 2 9

EV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Utility

Petrol 0 18 22 11 14 3 0 0 0 13 7 7 11 12 1 0 0

Diesel 19 1 0 4 13 16 0 0 0 0 0 5 0 0 4 10 2

HEV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0

PHEV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2

Fuel cell vehicles 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

EV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34



Table A.5: Proportion of total fleet VKT by SMMT group and powertrain group (bar colours) when increasing payback time

only and under the hybrid approach across the policy objectives: 1 = minimise TTW CO2 emissions; 2 = minimise WTW

CO2 emissions; 3 = minimise energy use; 4 = minimise LAP emissions; 5 = increase fuel duties; 6 = introduce feebates at

120 g CO2/km pivot; 7 = introduce feebates at 95 g CO2/km pivot ; and 8 = introduce feebates at 70 g CO2/km pivot.

Base Increasing payback time only Hybrid approach

Vehicle group 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Small

Petrol 29 7 9 3 22 17 0 0 0 4 5 8 32 7 24 26 27

Diesel 0 5 17 13 17 25 29 8 29 18 6 20 0 19 1 0 0

HEV 0 28 23 31 4 15 24 23 37 21 38 29 17 5 4 1 1

PHEV 0 0 0 0 8 0 13 32 0 0 0 0 0 0 6 5 5

Fuel cell vehicles 0 12 4 12 3 2 17 36 0 22 19 4 0 31 2 3 4

EV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Medium

Petrol 0 0 5 5 7 8 0 0 0 0 2 1 14 2 0 0 0

Diesel 41 21 21 13 3 8 0 0 0 13 11 21 3 11 36 42 39

HEV 0 6 2 0 8 0 0 0 5 0 0 0 10 0 1 0 0

PHEV 0 0 0 0 0 0 0 0 9 0 0 0 0 0 2 2 2

Fuel cell vehicles 0 0 0 0 0 0 17 2 1 0 0 0 0 0 1 1 1

EV 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Specialist

Petrol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Diesel 11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 4

HEV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 1

PHEV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1

Fuel cell vehicles 0 0 0 0 0 0 0 0 20 0 0 0 0 0 2 1 1

EV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Utility

Petrol 0 5 6 15 8 3 0 0 0 1 19 0 8 2 0 0 0

Diesel 19 7 2 0 5 0 0 0 0 17 1 11 0 12 7 10 13

HEV 0 7 3 8 16 0 0 0 0 0 0 0 16 0 3 0 0

PHEV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Fuel cell vehicles 0 1 8 0 0 22 0 0 0 3 0 6 0 10 3 0 0

EV 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
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