44 research outputs found

    Levels of lead, arsenic, mercury and cadmium in clays for oral use on the Dutch market and estimation of associated risks

    No full text
    Pregnant women in Africa, Asia and Suriname, and some immigrants in Western societies, traditionally consume clay products known by a variety of names such as mabele, calabash chalk, sikor and pimba. Furthermore, clay is used for health purposes in Western societies. Because certain clays can contain high levels of metals and metalloids, the aim of this study was to determine lead, arsenic, mercury and cadmium in clay products for oral use available on the Dutch market. Traditional clays originating from Africa (n = 10) and Suriname (n = 26), and health clays (n = 27) were sampled from 2004 up to and including 2012. Total metal and metalloid contents were measured by ICP-MS and showed maximum levels of lead, arsenic, mercury and cadmium of 99.7, 45.1, 2.2 and 0.75 mg kg(-1), respectively. In the absence of maximum limits for these type of clays, the potential exposure was estimated from the determined concentration, the estimated daily use level of the clays, and the estimated bioaccessibility of the different metals and arsenic. The intake estimates were compared with existing health-based guidance values. For lead, the use of 34 of the 36 traditional clays and two of the 27 health clays would result in intake levels exceeding the toxicological limit by up to 20-fold. Use of 15 of the 35 traditional clays and 11 of the 27 health clays would result in intake levels exceeding the toxicological limit for inorganic arsenic by up to 19-fold. Although limited bioaccessibility from the clay may limit the exposure and exceedance of the health-based guidance values, it was concluded that lead and arsenic intakes from some clay products could be of concern also because of their use by pregnant women and the potential developmental toxicity. As a result the use of these products, especially by pregnant women, should be discourage

    Monitoring of polycyclic aromatic hydrocarbons (PAH) in food supplements containing botanicals and other ingredients on the Dutch market

    No full text
    Food supplements can contain polycyclic aromatic hydrocarbons (PAH). The European Food Safety Authority (EFSA) has defined 16 priority PAH that are both genotoxic and carcinogenic and identified eight priority PAH (PAH8) or four of these (PAH4) as good indicators of the toxicity and occurrence of PAH in food. The current study aimed to determine benzo[a]pyrene and other EFSA priority PAH in different categories of food supplements containing botanicals and other ingredients. From 2003 to 2008, benzo[a]pyrene exceeded the limit of quantification (LOQ) in 553 (44%) of 1258 supplements with a lower-bound mean of 3.37¿µg¿kg-1. In 2008 and 2009, benzo[a]pyrene and 12 other EFSA priority PAH were determined in 333 food supplements. Benzo[a]pyrene exceeded the LOQ in 210 (63%) food supplements with a lower-bound mean of 5.26¿µg¿kg-1. Lower-bound mean levels for PAH4 and PAH8(-indeno[1,2,3-cd]pyrene) were 33.5 and 40.5¿µg¿kg-1, respectively. Supplements containing resveratrol, Ginkgo biloba, St. John's wort and propolis showed relatively high PAH4 levels in 2008 and 2009. Before 2008, supplements with these ingredients and also dong quai, green tea or valerian contained relatively high benzo[a]pyrene levels. On average, PAH4 intake resulting from food supplement use will be at the lower end of the range of contributions of main food groups to PAH4 exposure, although individual food supplements can contribute significantly to PAH4 exposure. Regular control of EFSA indicator PAH levels in food supplements may prove a way forward to reduce further the intake of PAH from food
    corecore