1,135 research outputs found

    Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints

    Full text link
    Language is increasingly being used to define rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively.Comment: 11 pages, published in EMNLP 201

    The diverse evolutionary paths of simulated high-z massive, compact galaxies to z=0

    Get PDF
    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M∗=1−3×1011M_* = 1-3 \times 10^{11} M⊙_\odot, M∗/R1.5>1010.5M_*/R^{1.5} > 10^{10.5} M⊙_\odot/kpc1.5^{1.5}) at z=2z=2 in the cosmological hydrodynamical simulation Illustris and trace them forward to z=0z=0 to uncover their evolution and identify their descendants. By z=0z=0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex-situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15% are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ∼\sim10% remain compact by z=0z=0. The majority of the size growth is driven by the acquisition of ex-situ mass. The most massive galaxies at z=0z=0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z=2z=2. The compact galaxies' merger rates are influenced by their z=2z=2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.Comment: 19 pages, 10 figures, MNRAS accepted version including 2 new figure

    Galaxy interactions in IllustrisTNG-100, I: The power and limitations of visual identification

    Get PDF
    We present a sample of 446 galaxy pairs constructed using the cosmological simulation IllustrisTNG-100 at z = 0, with M_(FoF,dm)=10¹¹−10^(13.5) M⊙. We produce ideal mock SDSS g-band images of all pairs to test the reliability of visual classification schema employed to produce samples of interacting galaxies. We visually classify each image as interacting or not based on the presence of a close neighbour, the presence of stellar debris fields, disturbed discs, and/or tidal features. By inspecting the trajectories of the pairs, we determine that these indicators correctly identify interacting galaxies ∼45 per cent of the time. We subsequently split the sample into the visually identified interacting pairs (VIP; 38 pairs) and those which are interacting but are not visually identified (nonVIP; 47 pairs). We find that VIP have undergone a close passage nearly twice as recently as the non-VIP, and typically have higher stellar masses. Further, the VIP sit in dark matter haloes that are approximately 2.5 times as massive, in environments nearly 2 times as dense, and are almost a factor of 10 more affected by the tidal forces of their surroundings than the nonVIP. These factors conspire to increase the observability of tidal features and disturbed morphologies, making the VIP more likely to be identified. Thus, merger rate calculations which rely on stellar morphologies are likely to be significantly biased toward massive galaxy pairs which have recently undergone a close passage

    Jellyfish galaxies with the IllustrisTNG simulations: I. Gas-stripping phenomena in the full cosmological context

    Full text link
    We use IllustrisTNG, a suite of gravity and MHD simulations, to study the demographics and properties of jellyfish galaxies in the full cosmological context. By jellyfish galaxies, we mean satellites orbiting in massive groups and clusters that exhibit highly asymmetric distributions of gas and gas tails. We use the TNG100 run and select galaxies at redshifts z≤0.6z\le0.6 with stellar mass exceeding 109.5M⊙10^{9.5}{\rm M_\odot} and with host halo masses of 1013−1014.6 M⊙10^{13}-10^{14.6}\,{\rm M_\odot}. Among more than about 6000 (2600) galaxies with stars (and some gas), we identify 800 jellyfish galaxies by visually inspecting their gas and stellar mass maps in random projections. About 31%31\% of cluster satellites are found with signatures of ram-pressure stripping and gaseous tails stemming from the main luminous bodies. This is a lower limit, since the random orientation entails a loss of about 30%30\% of galaxies that in an optimal projection would otherwise be identified as jellyfish. The connection with ram-pressure stripping is further confirmed by a series of findings: jellyfish galaxies are more frequent at intermediate and large cluster-centric distances (r/R200c≳0.25r/R_{\rm 200c}\gtrsim 0.25); they move through the ICM with larger bulk velocities and Mach numbers than the general cluster population, typically orbiting supersonically and experiencing larger ram pressures. Furthermore, the gaseous tails usually extend in opposite directions to the galaxy trajectory, with no relation between tail orientation and the host's center. The frequency of jellyfish galaxies shows a very weak dependence on redshift (0≤z≤0.6)(0\le z\le0.6) but larger fractions of disturbed gaseous morphologies occur in more massive hosts and at smaller satellite masses. Finally, jellyfish galaxies are late infallers (<2.5−3< 2.5-3 Gyrs ago, at z=0z=0) and the emergence of gaseous tails correlates well with the presence of bow shocks in the ICM.Comment: 25 pages, 15 figures, Accepted for publication on MNRAS after minor revision
    • …
    corecore