37 research outputs found
Molecular Evolution of Human Immunodeficiency Virus Type 1 upon Transmission between Human Leukocyte Antigen Disparate Donor-Recipient Pairs
BACKGROUND: To address evolution of HIV-1 after transmission, we studied sequence dynamics in and outside predicted epitopes of cytotoxic T lymphocytes (CTL) in subtype B HIV-1 variants that were isolated from 5 therapy-naive horizontal HLA-disparate donor-recipient pairs from the Amsterdam Cohort Studies on HIV-1 infection and AIDS. METHODOLOGY/PRINCIPAL FINDINGS: In the first weeks after transmission, the majority of donor-derived mutations in and outside donor-HLA-restricted epitopes in Gag, Env, and Nef, were preserved in the recipient. Reversion to the HIV-1 subtype B consensus sequence of mutations in- and outside donor-HLA-restricted CTL epitopes, and new mutations away from the consensus B sequence mostly within recipient-HLA-restricted epitopes, contributed equally to the early sequence changes. In the subsequent period (1-2 years) after transmission, still only a low number of both reverting and forward mutations had occurred. During subsequent long-term follow-up, sequence dynamics were dominated by forward mutations, mostly (50-85%) in recipient-HLA-restricted CTL epitopes. At the end of long-term follow-up, on average 43% of the transmitted CTL escape mutations in donor-HLA-restricted epitopes had reverted to the subtype B consensus sequence. CONCLUSIONS/SIGNIFICANCE: The relatively high proportion of long-term preserved mutations after transmission points to a lack of back selection even in the absence of CTL pressure, which may lead to an accumulating loss of critical CTL epitopes. Our data are supportive for a continuous adaptation of HIV-1 to host immune pressures which may have implications for vaccine design
Constitutive signaling of the Human Cytomegalovirus-encoded Chemokine receptor US28
Previously it was shown that the HHV-8-encoded chemokine receptor ORF74 shows considerable agonist-independent, constitutive activity giving rise to oncogenic transformation (Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C., and Cesarman, E. (1997) Nature 385, 347-350). In this study we report that a second viral-encoded chemokine receptor, the human cytomegalovirus-encoded US28, also efficiently signals in an agonist-independent manner. Transient expression of US28 in COS-7 cells leads to the constitutive activation of phospholipase C and NF-κB signaling via
Recovery of Viremic Control after Superinfection with Pathogenic HIV Type 1 in a Long‐Term Elite Controller of HIV Type 1 Infection
Pol as a target for antibody dependent cellular cytotoxicity responses in HIV-1 infection
AbstractAntibody-dependent cellular cytotoxicity (ADCC) may assist in preventing HIV or delaying disease progression. Most prior studies have analysed Env-specific ADCC responses. We hypothesized that effective ADCC-based immunity may target conserved internal viral proteins such as Pol. We analysed the ability overlapping Pol peptides to induce activation of NK cells via ADCC. We prospectively studied ADCC responses in 83 HIV+ subjects followed for 3years. Pol peptides were commonly targeted by ADCC responses in these chronically infected subjects (in 32 of the 83 subjects). However, Pol-specific ADCC responses declined over time and did not correlate with delayed HIV progression, measured by either baseline CD4 T cells, CD4 T cell loss over time, baseline viral load or the need to start antiretroviral therapy. Although Pol is frequently targeted by ADCC in HIV+ subjects, the strength or specificity of Pol-specific ADCC responses needs to be modulated to be effective in delaying HIV progression
Kaposi's Sarcoma-Associated Herpesvirus-Encoded G Protein-Coupled Receptor ORF74 Constitutively Activates p44/p42 MAPK and Akt via G(i) and Phospholipase C-Dependent Signaling Pathways
The G protein-coupled receptor encoded by Kaposi's sarcoma-associated herpesvirus, also referred to as ORF74, has been shown to stimulate oncogenic and angiogenic signaling pathways in a constitutively active manner. The biochemical routes linking ORF74 to these signaling pathways are poorly defined. In this study, we show that ORF74 constitutively activates p44/p42 mitogen-activated protein kinase (MAPK) and Akt via G(i)- and phospholipase C (PLC)-mediated signaling pathways. Activation of Akt by ORF74 appears to be phosphatidylinositol 3-kinase (PI3-K) dependent but, interestingly, is also mediated by activation of protein kinase C (PKC) and p44/p42 MAPK. ORF74 may signal to Akt via p44/p42 MAPK, which can be activated by G(i), through activation of PI3-K or through PKC via the PLC pathway. Signaling of ORF74 to these proliferative and antiapoptotic signaling pathways can be further modulated positively by growth-related oncogene (GROα/CXCL1) and negatively by human gamma interferon-inducible protein 10 (IP-10/CXCL10), thus acting as an agonist and an inverse agonist, respectively. Despite the ability of the cytomegalovirus-encoded chemokine receptor US28 to constitutively activate PLC, this receptor does not increase phosphorylation of p44/p42 MAPK or Akt in COS-7 cells. Hence, ORF74 appears to signal through a larger diversity of G proteins than US28, allowing it to couple to proliferative and antiapoptotic signaling pathways. ORF74 can therefore be envisioned as an attractive target for novel treatment of Kaposi's sarcoma
Recovery of viremic control after superinfection with pathogenic HIV type 1 in a long-term elite controller of HIV type 1 infection
A human immunodeficiency virus type 1 (HIV-1)-infected elite controller (defined as an untreated HIV-1-infected person with a plasma HIV-1 RNA leve
Immune escape from HIV-specific antibody-dependent cellular cytotoxicity (ADCC) pressure
Effective immunity to HIV is poorly understood. In particular, a role for antibody-dependent cellular cytotoxicity (ADCC) in controlling HIV is controversial. We hypothesized that significant pressure from HIV-specific ADCC would result in immune-escape variants. A series of ADCC epitopes in HIV-infected subjects to specific consensus strain HIV peptides were mapped using a flow cytometric assay for natural killer cell activation. We then compared the ADCC responses to the same peptide epitope derived from the concurrent HIV sequence(s) expressed in circulating virus. In 9 of 13 epitopes studied, ADCC antibodies were unable to recognize the concurrent HIV sequence. Our studies suggest ADCC responses apply significant immune pressure on the virus. This result has implications for the induction of ADCC responses by HIV vaccines
Viral replication capacity as a correlate of HLA B57/B5801-associated nonprogressive HIV-1 infection
HLA B57 and the closely related HLA B5801 are over-represented among HIV-1 infected long-term nonprogressors (LTNPs). It has been suggested that this association between HLA B57/5801 and asymptomatic survival is a consequence of strong CTL responses against epitopes in the viral Gag protein. Moreover, CTL escape mutations in Gag would coincide with viral attenuation, resulting in low viral load despite evasion from immune control. In this study we compared HLA B57/5801 HIV-1 infected progressors and LTNPs for sequence variation in four dominant epitopes in Gag and their ability to generate CTL responses against these epitopes and the autologous escape variants. Prevalence and appearance of escape mutations in Gag epitopes and potential compensatory mutations were similar in HLA B57/5801 LTNPs and progressors. Both groups were also indistinguishable in the magnitude of CD8+ IFN-gamma responses directed against the wild-type or autologous escape mutant Gag epitopes in IFN-gamma ELISPOT analysis. Interestingly, HIV-1 variants from HLA B57/5801 LTNPs had much lower replication capacity than the viruses from HLA B57/5801 progressors, which did not correlate with specific mutations in Gag. In conclusion, the different clinical course of HLA B57/5801 LTNPs and progressors was not associated with differences in CTL escape mutations or CTL activity against epitopes in Gag but rather with differences in HIV-1 replication capacit
