10 research outputs found

    Thrombin Protease-activated Receptor-1 Signals through Gq- and G13-initiated MAPK Cascades Regulating c-Jun Expression to Induce Cell Transformation

    Get PDF
    Although the ability of G protein-coupled receptors to stimulate normal and aberrant cell growth has been intensely investigated, the precise nature of the molecular mechanisms underlying their transforming potential are still not fully understood. In this study, we have taken advantage of the potent mitogenic effect of thrombin and the focus-forming activity of one of its receptors, protease-activated receptor-1, to dissect how this receptor coupled to Gi, Gq/11, and G12/13 transduces signals from the membrane to the nucleus to initiate transcriptional events involved in cell transformation. Using endogenous and transfected thrombin receptors in NIH 3T3 cells, ectopic expression of muscarinic receptors coupled to Gq and Gi, and chimeric G protein subunits and murine fibroblasts deficient in Gq/11, and G12/13, we show here that, although coupling to Gi is sufficient to induce ERK activation, the ability to couple to Gq and/or G13 is necessary to induce c-jun expression and cell transformation. Furthermore, we show that Gq and G13 can initiate the activation of MAPK cascades, including JNK, p38, and ERK5, which in turn regulate the activity of transcription factors controlling expression from the c-jun promoter. We also present evidence that c-Jun and the kinases regulating its expression are integral components of the transforming pathway initiated by protease-activated receptor-1

    The small GTP-binding protein RhoA regulates c-Jun by a ROCK-JNK signaling axis

    Get PDF
    RhoA regulates the actin cytoskeleton and the expres- sion of genes associated with cell proliferation. This includes c-fos and c-jun, which are members of the AP1 family of transcription factors that play a key role in normal and aberrant cell growth. Whereas RhoA stimulates the c-fos SRE by a recently elucidated mechanism that is dependent on actin treadmilling, how RhoA regulates c-jun is still poorly understood. We found that RhoA stimulates c-jun expression through ROCK, but independently from the ability of ROCK to promote actin polymerization. Instead, we found that ROCK activates JNK, which then phosphor- ylates c-Jun and ATF2 when bound to the c-jun pro- moter. Thus, ROCK represents a point of signal diver- gence downstream from RhoA, as it promotes actin reorganization and the consequent expression from the c-fos SRE, while a parallel pathway connects ROCK to JNK, thereby stimulating c-jun expression. Ultimately, these pathways converge in the nucleus to regulate AP1 activity

    The Platelet-derived Growth Factor Controls c-myc Expression through a JNK- and AP-1-dependent Signaling Pathway *

    Get PDF
    Pro-inflammatory cytokines, environmental stresses, as well as receptor tyrosine kinases regulate the activity of JNK. In turn, JNK phosphorylates Jun members of the AP-1 family of transcription factors, thereby controlling processes as different as cell growth, differentiation, and apoptosis. Still, very few targets of the JNK-Jun pathway have been identified. Here we show that JNK is required for the induction of c-myc expression by PDGF. Furthermore, we identify a phylogenetically conserved AP-1-responsive element in the promoter of the c-myc proto-oncogene that recruits in vivo the c-Jun and JunD AP-1 family members and controls the PDGF-dependent transactivation of the c-myc promoter. These findings suggest the existence of a novel biochemical route linking tyrosine kinase receptors, such as those for PDGF, and c-myc expression through JNK activation of AP-1 transcription factors. They also provide a novel potential mechanism by which both JNK and Jun proteins may exert either their proliferative or apoptotic potential by stimulating the expression of the c-myc proto-oncogene

    Phosphorylation of the Carboxyl-Terminal Transactivation Domain of c-Fos by Extracellular Signal-Regulated Kinase Mediates the Transcriptional Activation of AP-1 and Cellular Transformation Induced by Platelet-Derived Growth Factor

    No full text
    Polypeptide growth factors, such as platelet-derived growth factor (PDGF), promote the reinitiation of DNA synthesis and cell growth through multiple intracellular signaling pathways that converge in the nucleus to regulate the activity of transcription factors, thereby controlling the expression of growth-promoting genes. Among them, the AP-1 (activating protein-1) family of transcription factors, including c-Fos and c-Jun family members, plays a key role, as AP-1 activity is potently activated by PDGF and is required to stimulate cell proliferation. However, the nature of the pathways connecting PDGF receptors to AP-1 is still poorly defined. In this study, we show that PDGF regulates AP-1 by stimulating the expression and function of c-Fos through extracellular signal-regulated kinase (ERK). The latter involves the direct phosphorylation by ERK of multiple residues in the carboxyl-terminal transactivation domain of c-Fos, which results in its increased transcriptional activity. Interestingly, the phosphorylation of c-Fos by ERK was required for the ability of PDGF and serum to stimulate the activity of c-Fos as well as AP-1-dependent transcription. Furthermore, we provide evidence that the ERK-dependent activation of c-Fos is an integral component of the mitogenic pathway by which PDGF regulates normal and aberrant cell growth

    CKA, a Novel Multidomain Protein, Regulates the JUN N-Terminal Kinase Signal Transduction Pathway in Drosophila

    No full text
    The Drosophila melanogaster JUN N-terminal kinase (DJNK) and DPP (decapentaplegic) signal transduction pathways coordinately regulate epithelial cell sheet movement during the process of dorsal closure in the embryo. By a genetic screen of mutations affecting dorsal closure in Drosophila, we have now identified a multidomain protein, connector of kinase to AP-1 (cka), that functions in the DJNK pathway and controls the localized expression of dpp in the leading-edge cells. We have also investigated how CKA acts. This unique molecule forms a complex with HEP (DJNKK), BSK (DJNK), DJUN, and DFOS. Complex formation activates BSK kinase, which in turn phosphorylates and activates DJUN and DFOS. These data suggest that CKA represents a novel molecule regulating AP-1 activity by organizing a molecular complex of kinases and transcription factors, thus coordinating the spatial-temporal expression of AP-1-regulated genes
    corecore