10 research outputs found

    Consistent tracer administration profile improves test–retest repeatability of myocardial blood flow quantification with 82Rb dynamic PET imaging

    No full text
    Objectives: Quantification of myocardial blood flow (MBF) and stress/rest flow reserve is used increasingly to diagnose multi-vessel coronary artery disease and micro-vascular disease with PET imaging. However, variability in the measurements may limit physici

    Intra-and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program

    No full text
    Background: Changes in myocardial blood flow between rest and stress states are commonly used to diagnose coronary artery disease. Relative myocardial perfusion imaging (MPI) is used routinely while myocardial blood flow quantification (MBF) may improve the sensitivity for detection of early disease. The ratio of flow at stress and rest (S/R) and their difference (S-R) have both been proposed as a means to detect regions with reduced myocardial flow reserve (MFR). In this study, we describe a highly automated method to calculate regional and global rest, stress, S/R, and S-R polar maps of the left ventricle myocardium. Methods: We measured the inter-and intra-operator variability using two randomized datasets (n = 30 each) for each of two operators (novice and expert) with correlation and Bland-Altman reproducibility coefficient (RPC%) analyses. Results: S-R MBF had less inter-operator dependent variability than S/R (RPC% = 5.0% vs 12.6%, P <.001). While there was no difference in intra-operator variability with S-R MBF (novice vs expert RPC% = 6.4% vs 5.9%, P = ns), variability was higher in the noviceoperator for S/R (RPC% = 16.8% vs 8.5% respectively, P <.001), suggesting that S-R may be preferred for detecting small changes in MFR. The novice operator's intervention pattern became more similar to that of the expert in the later dataset, emphasizing the need for adequate training and quality assurance. Conclusion: The proposed method results in low operator-dependent variability, suitable for routine use. Copyrigh

    Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia

    No full text
    Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality

    Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia

    No full text
    corecore