346 research outputs found

    A parsec-scale flow associated with the IRAS 16547-4247 radio jet

    Full text link
    IRAS 16547-4247 is the most luminous (6.2 x 10^4 Lsun) embedded young stellar object known to harbor a thermal radio jet. We report the discovery using VLT-ISAAC of a chain of H_2 2.12 um emission knots that trace a collimated flow extending over 1.5 pc. The alignment of the H_2 flow and the central location of the radio jet implies that these phenomena are intimately linked. We have also detected using TIMMI2 an isolated, unresolved 12 um infrared source towards the radio jet . Our findings affirm that IRAS 16547-4247 is excited by a single O-type star that is driving a collimated jet. We argue that the accretion mechanism which produces jets in low-mass star formation also operates in the higher mass regime.Comment: Accepted for publication in ApJL, 10 pages, 2 figure

    High Angular Resolution Observations of the Collimated Jet Source Associated with a Massive Protostar in IRAS 16547-4247

    Full text link
    A triple radio source recently detected in association with the luminous infrared source IRAS 16547-4247 has been studied with high angular resolution and high sensitivity with the Very Large Array at 3.6 and 2 cm. Our observations confirm the interpretation that the central object is a thermal radio jet, while the two outer lobes are most probably heavily obscured HH objects. The thermal radio jet is resolved angularly for the first time and found to align closely with the outer lobes. The opening angle of the thermal jet is estimated to be ∌25∘\sim 25^\circ, confirming that collimated outflows can also be present in massive protostars. The proper motions of the outer lobes should be measurable over timescales of a few years. Several fainter sources detected in the region are most probably associated with other stars in a young cluster.Comment: 9 pages, 2 figure

    A multiwavelength study of young massive star forming regions: II. The dust environment

    Full text link
    We present observations of 1.2-mm dust continuum emission, made with the Swedish ESO Submillimeter Telescope, towards eighteen luminous IRAS point sources, all with colors typical of compact HII regions and associated with CS(2-1) emission, thought to be representative of young massive star forming regions. Emission was detected toward all the IRAS objects. We find that the 1.2-mm sources associated with them have distinct physical parameters, namely sizes of 0.4 pc, dust temperatures of 30 K, masses of 2x10^3 Msun, column densities of 3x10^23 cm^-2, and densities of 4x10^5 cm^-3. We refer to these dust structures as massive and dense cores. Most of the 1.2-mm sources show single-peaked structures, several of which exhibit a bright compact peak surrounded by a weaker extended envelope. The observed radial intensity profiles of sources with this type of morphology are well fitted with power-law intensity profiles with power-law indices in the range 1.0-1.7. This result indicates that massive and dense cores are centrally condensed, having radial density profiles with power-law indices in the range 1.5-2.2. We also find that the UC HII regions detected with ATCA towards the IRAS sources investigated here (Paper I) are usually projected at the peak position of the 1.2-mm dust continuum emission, suggesting that massive stars are formed at the center of the centrally condensed massive and dense cores.Comment: 6 figures, accepted by Ap

    The open cluster NGC 6520 and the nearby dark molecular cloud Barnard 86

    Get PDF
    Wide field BVI photometry and 12^{12}CO(1→\to0) observations are presen ted in the region of the open cluster NGC 6520 and the dark molecular cloud Barnard~86. From the analysis of the optical data we find that the cluster is rather compact, with a radius of 1.0±\pm0.5 arcmin, smaller than previous estimates. The cluster age is 150±\pm50 Myr and the reddening EB−V_{B-V}=0.42±\pm0.10. The distance from the Sun is estimated to be 1900±\pm100 pc, and it is larger than previous estimates. We finally derive basic properties of the dark nebula Barnard 86 on the assumption that it lies at the same distance of the cluster.Comment: 21 pages, 8 eps figures (a few degraded in resolution), accepted for publication in the Astronomical Journa

    Infall, Outflow, Rotation, and Turbulent Motions of Dense Gas within NGC 1333 IRAS 4

    Full text link
    Millimeter wavelength observations are presented of NGC 1333 IRAS 4, a group of highly-embedded young stellar objects in Perseus, that reveal motions of infall, outflow, rotation, and turbulence in the dense gas around its two brightest continuum objects, 4A and 4B. These data have finest angular resolution of approximately 2" (0.0034 pc) and finest velocity resolution of 0.13 km/s. Infall motions are seen from inverse P-Cygni profiles observed in H2CO 3_12-2_11 toward both objects, but also in CS 3-2 and N2H+ 1-0 toward 4A, providing the least ambiguous evidence for such motions toward low-mass protostellar objects. Outflow motions are probed by bright line wings of H2CO 3_12-2_11 and CS 3-2 observed at positions offset from 4A and 4B, likely tracing dense cavity walls. Rotational motions of dense gas are traced by a systematic variation of the N2H+ line velocities, and such variations are found around 4A but not around 4B. Turbulent motions appear reduced with scale, given N2H+ line widths around both 4A and 4B that are narrower by factors of 2 or 3 than those seen from single-dish observations. Minimum observed line widths of approximately 0.2 km/s provide a new low, upper bound to the velocity dispersion of the parent core to IRAS 4, and demonstrate that turbulence within regions of clustered star formation can be reduced significantly. A third continuum object in the region, 4B', shows no detectable line emission in any of the observed molecular species.Comment: LateX, 51 pages, 9 figures, accepted by Ap

    Inner Structure of Protostellar Collapse Candidate B335 Derived from Millimeter-Wave Interferometry

    Get PDF
    We present a study of the density structure of the protostellar collapse candidate B335 using continuum observations from the IRAM Plateau de Bure Interferometer made at wavelengths of 1.2mm and 3.0mm. We analyze these data, which probe spatial scales from 5000 AU to 500 AU, directly in the visibility domain by comparison to synthetic observations constructed from models that assume different physical conditions. This approach allows for much more stringent constraints to be derived from the data than from analysis of images. A single radial power law in density provides a good description of the data, with best fit power law index p=1.65+/-0.05. Through simulations, we quantify the sensitivity of this result to various model uncertainties, including assumptions of temperature distribution, outer boundary, dust opacity spectral index, and an unresolved central component. The largest uncertainty comes from the unknown presence of a centralized point source. A point source with 1.2mm flux of F=12+/-7 mJy reduces the density index to p=1.47+/-0.07. The remaining sources of systematic uncertainty, the most important of which is the temperature distribution, likely contribute a total uncertainty of < 0.2. We therefore find strong evidence that the power law index of the density distribution within 5000 AU is significantly less than the value at larger radii, close to 2.0 from previous studies of dust emission and extinction. These results conform well to the generic paradigm of isolated, low-mass star formation which predicts a power law density index close to p=1.5 for an inner region of gravitational free fall onto the protostar.Comment: Accepted to the Astrophysical Journal; 27 pages, 3 figure

    Massive Clumps in the NGC 6334 Star Forming Region

    Full text link
    We report observations of dust continuum emission at 1.2 mm toward the star forming region NGC 6334 made with the SEST SIMBA bolometer array. The observations cover an area of ∌2\sim 2 square degrees with approximately uniform noise. We detected 181 clumps spanning almost three orders of magnitude in mass (3\Msun−6×103-6\times10^3 \Msun) and with sizes in the range 0.1--1.0 pc. We find that the clump mass function dN/dlog⁥MdN/d\log M is well fit with a power law of the mass with exponent -0.6 (or equivalently dN/dM∝M−1.6dN/dM \propto M^{-1.6}). The derived exponent is similar to those obtained from molecular line emission surveys and is significantly different from that of the stellar initial mass function. We investigated changes in the mass spectrum by changing the assumptions on the temperature distribution of the clumps and on the contribution of free-free emission to the 1.2 mm emission, and found little changes on the exponent. The Cumulative Mass Distribution Function is also analyzed giving consistent results in a mass range excluding the high-mass end where a power-law fit is no longer valid. The masses and sizes of the clumps observed in NGC 6334 indicate that they are not direct progenitors of stars and that the process of fragmentation determines the distribution of masses later on or occurs at smaller spatial scales. The spatial distribution of the clumps in NGC 6334 reveals clustering which is strikingly similar to that exhibited by young stars in other star forming regions. A power law fit to the surface density of companions gives Σ∝ξ−0.62\Sigma\propto \theta^{-0.62}.Comment: 16 pages, 11 figures, 4 tables. To appear in the Astrophysical Journa
    • 

    corecore