32 research outputs found
Microbiological and 16S rRNA analysis of sulphite-reducing clostridia from river sediments in central Italy
<p>Abstract</p> <p>Background</p> <p>Microbiological indicators are commonly used in the assessment of public health risks associated with fecal contamination of freshwater ecosystems. Sediments are a reservoir of microorganisms, and can thus provide information on past pollution events, not obtainable through the testing of surface water. Moreover, pathogens present in sediment may represent future threats to human health. <it>Clostridium perfringens</it>, a typical colonizer of sediments, has been suggested as an alternative indicator of fecal pollution. In order to be suitable for such purpose, the microorganism should be widely distributed in contaminated environments. The objective of this study was thus to determine the composition of the anaerobic community in sediment samples of the lower Tiber basin, in central Italy, through a combined approach involving granulometric analysis of sediment samples, as well as a microbiological and molecular (16S rRNA) analysis of strains.</p> <p>Results</p> <p>Granulometry showed a similar, clayey sediment composition, in most sampling sites. The microbiological method, employing, an adaptation of the standard method, proved to be effective in isolating anaerobic bacteria from the environmental matrix for the purpose of genetic analysis. Eighty-three strains of bacteria were isolated and the partial 16S rRNA gene sequenced. While biochemical analysis detected only <it>C. perfringens </it>strains, phylogenetic analysis indicated the presence of three clusters: <it>C. perfringens, C. bifermentans </it>and <it>B. cereus</it>, comprising eight taxa. <it>C. perfringens</it>, the commonest in almost all sediment sampling sites, was present in all sites, and in both seasons (seasonal sampling was carried out only along the Tiber and Aniene rivers). None of the described genetic profiles showed complete similarity with GenBank sequences.</p> <p>Conclusion</p> <p>The study underlines the value of <it>C. perfringens </it>as an alternative microbial indicator of fecal contamination in river sediments. This is supported by the bacterium's presence in all sampling sites, and in both seasons, coupled with its detectability using commercial diagnostic kits.</p> <p>The study also illustrates the presence of an anaerobic community of considerable biodiversity in the lower Tiber basin, with <it>C. perfringens </it>as its main component. The 16S rRNA analysis, while confirming the phylogenetic relationships among isolated species, also showed haplotype patterns different from those present in the NCBI database.</p
emerging and potentially emerging viruses in water environments
Among microorganisms, viruses are best fit to become emerging pathogens since they are able to adapt not only by mutation but also through recombination and reassortment and can thus become able to infect new hosts and to adjust to new environments. Enteric viruses are among the commonest and most hazardous waterborne pathogens, causing both sporadic and outbreak-related illness. The main health effect associated with enteric viruses is gastrointestinal illness, but they can also cause respiratory symptoms, conjunctivitis, hepatitis, central nervous system infections, and chronic diseases. Non-enteric viruses, such as respiratory and epitheliotrophic viruses are not considered waterborne, as they are not readily transmitted to water sources from infected individuals. The present review will focus on viral pathogens shown to be transmitted through water. It will also provide an overview of viruses that had not been a concern for waterborne transmission in the past, but that may represent potentially emerging waterborne pathogens due to their occurrence and persistence in water environments
Quantitative Microbial Risk Assessment as support for bathing waters profiling
Profiling bathing waters supported by Quantitative Microbial Risk Assessment (QMRA) is key to the WHO's recommendations for the 2020/2021 revision of the European Bathing Water Directive. We developed an areaspecific QMRA model on four pathogens, using fecal indicator concentrations (E. coil, enterococci) for calculating pathogen loads. The predominance of illness was found to be attributable to Human Adenovirus, followed by Salmonella, Vibrio, and Norovirus. Overall, the cumulative illness risk showed a median of around 1 case/10000 exposures. The risk estimates were strongly influenced by the indicators that were used, suggesting the need for a more detailed investigation of the different sources of fecal contamination. Area-specific threshold values for fecal indicators were estimated on a risk-basis by modelling the cumulative risk against E. coll. and enterococci concentrations. To improve bathing waters assessment, we suggest considering source apportionment locally estimating of pathogen/indicator ratios, and calculating site-specific indicators thresholds based on risk assessment
The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance
The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide,
raising serious concerns.
A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations
of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between
11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the
country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint
Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing.
Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7
December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive
wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples)
in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with
the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in
which the variant was detected increased fromone in the first week, to 11 in the second, and to 17 in the last one. The
presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples,
and by Sanger sequencing in 66% (64/97) of PCR amplicons
Recreational and drinking waters as a source of norovirus gastroenteritis outbreaks: a review and update
ABSTRACT The distribution of noroviruses is worldwide. In industrialized countries, noroviruses are the most common viral cause of gastroenteritis outbreaks and play an important role in sporadic gastroenteritis as well. Transmission may occur through the ingestion of contaminated foods or water, through person-to-person contact, or by way of direct contact with contaminated surfaces. Of particular importance is their ability to cause waterborne outbreaks linked either to the direct consumption of water or to its recreational uses. This article reviews the clinical manifestations and epidemiology of norovirus infection, and describes over 40 waterborne norovirus outbreaks, their respective probable sources of contamination and -where water samples were tested -the genetic types identified
Emerging and potentially emerging viruses in water environments
Among microorganisms, viruses are best fit to become emerging pathogens since they are able to adapt not only by mutation but also through recombination and reassortment and can thus become able to infect new hosts and to adjust to new environments. Enteric viruses are among the commonest and most hazardous waterborne pathogens, causing both sporadic and outbreak-related illness. The main health effect associated with enteric viruses is gastrointestinal illness, but they can also cause respiratory symptoms, conjunctivitis, hepatitis, central nervous system infections, and chronic diseases. Non-enteric viruses, such as respiratory and epitheliotrophic viruses are not considered waterborne, as they are not readily transmitted to water sources from infected individuals. The present review will focus on viral pathogens shown to be transmitted through water. It will also provide an overview of viruses that had not been a concern for waterborne transmission in the past, but that may represent potentially emerging waterborne pathogens due to their occurrence and persistence in water environments
Emerging and potentially emerging viruses in water environments
Among microorganisms, viruses are best fit to become emerging pathogens since they are able to adapt not only by mutation but also through recombination and reassortment and can thus become able to infect new hosts and to adjust to new environments. Enteric viruses are among the commonest and most hazardous waterborne pathogens, causing both sporadic and outbreak-related illness. The main health effect associated with enteric viruses is gastrointestinal illness, but they can also cause respiratory symptoms, conjunctivitis, hepatitis, central nervous system infections, and chronic diseases. Non-enteric viruses, such as respiratory and epitheliotrophic viruses are not considered waterborne, as they are not readily transmitted to water sources from infected individuals. The present review will focus on viral pathogens shown to be transmitted through water. It will also provide an overview of viruses that had not been a concern for waterborne transmission in the past, but that may represent potentially emerging waterborne pathogens due to their occurrence and persistence in water environments
Molecular Detection of Hepatitis E Virus in Sewage Samples ▿
Human hepatitis E virus (HEV) is considered an emerging pathogen in industrialized countries. In Italy, the true burden of HEV infection is unknown. Molecular HEV screening of raw sewage samples from 11 wastewater treatment plants yielded 19 positives (16%; 18 genotype I, 1 genotype III) evenly distributed throughout Italy. Evidence that HEV could be establishing itself in our region is accumulating and may justify more active surveillance to monitor its spread
Viral infections acquired indoors through airborne, droplet or contact transmission
BACKGROUND: Indoor human environments, including homes, offices, schools, workplaces, transport systems and other settings, often harbor potentially unsafe microorganisms. Most previous studies of bioaerosols in indoor environments have addressed contamination with bacteria or fungi. Reports on the presence of viral aerosols in indoor air are scarce, however, despite the fact that viruses are probably the most common cause of infection acquired indoor. OBJECTIVE: This review discusses the most common respiratory (influenza viruses, rhino-viruses, coronaviruses, adenoviruses, respiratory syncytial viruses, and enteroviruses) and gastrointestinal (noroviruses) viral pathogens which can be easily transmitted in indoor environments. RESULTS: The vast majority of studies reviewed here concern hospital and other health facilities where viruses are a well-known cause of occupational and nosocomial infections. Studies on other indoor environments, on the other hand, including homes, non-industrial workplaces and public buildings, are scarce. CONCLUSIONS: The lack of regulations, threshold values and standardized detection methods for viruses in indoor environments, make both research and interpretation of results difficult in this field, hampering infection control efforts. Further research will be needed to achieve a better understanding of virus survival in aerosols and on surfaces, and to elucidate the relationship between viruses and indoor environmental characteristics