29 research outputs found
Unified Pretraining Target Based Video-music Retrieval With Music Rhythm And Video Optical Flow Information
Background music (BGM) can enhance the video's emotion. However, selecting an
appropriate BGM often requires domain knowledge. This has led to the
development of video-music retrieval techniques. Most existing approaches
utilize pretrained video/music feature extractors trained with different target
sets to obtain average video/music-level embeddings. The drawbacks are
two-fold. One is that different target sets for video/music pretraining may
cause the generated embeddings difficult to match. The second is that the
underlying temporal correlation between video and music is ignored. In this
paper, our proposed approach leverages a unified target set to perform
video/music pretraining and produces clip-level embeddings to preserve temporal
information. The downstream cross-modal matching is based on the clip-level
features with embedded music rhythm and optical flow information. Experiments
demonstrate that our proposed method can achieve superior performance over the
state-of-the-art methods by a significant margin
TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844
Data from the newly-commissioned \textit{Transiting Exoplanet Survey
Satellite} (TESS) has revealed a "hot Earth" around LHS 3844, an M dwarf
located 15 pc away. The planet has a radius of and
orbits the star every 11 hours. Although the existence of an atmosphere around
such a strongly irradiated planet is questionable, the star is bright enough
(, ) for this possibility to be investigated with transit and
occultation spectroscopy. The star's brightness and the planet's short period
will also facilitate the measurement of the planet's mass through Doppler
spectroscopy.Comment: 10 pages, 4 figures. Submitted to ApJ Letters. This letter makes use
of the TESS Alert data, which is currently in a beta test phase, using data
from the pipelines at the TESS Science Office and at the TESS Science
Processing Operations Cente
A massive hot Jupiter orbiting a metal-rich early-M star discovered in the TESS full frame images
Observations and statistical studies have shown that giant planets are rare
around M dwarfs compared with Sun-like stars. The formation mechanism of these
extreme systems remains under debate for decades. With the help of the TESS
mission and ground based follow-up observations, we report the discovery of
TOI-4201b, the most massive and densest hot Jupiter around an M dwarf known so
far with a radius of and a mass of ,
about 5 times heavier than most other giant planets around M dwarfs. It also
has the highest planet-to-star mass ratio () among such
systems. The host star is an early-M dwarf with a mass of $0.61\pm0.02\
M_{\odot}0.63\pm0.02\ R_{\odot}0.52\pm 0.08$ dex). However, interior
structure modeling suggests that its planet TOI-4201b is metal-poor, which
challenges the classical core-accretion correlation of stellar-planet
metallicity, unless the planet is inflated by additional energy sources.
Building on the detection of this planet, we compare the stellar metallicity
distribution of four planetary groups: hot/warm Jupiters around G/M dwarfs. We
find that hot/warm Jupiters show a similar metallicity dependence around G-type
stars. For M dwarf host stars, the occurrence of hot Jupiters shows a much
stronger correlation with iron abundance, while warm Jupiters display a weaker
preference, indicating possible different formation histories.Comment: 21 pages, 11 figures, 4 tables, submitted to A
Three low-mass companions around aged stars discovered by TESS
We report the discovery of three transiting low-mass companions to aged
stars: a brown dwarf (TOI-2336b) and two objects near the hydrogen burning mass
limit (TOI-1608b and TOI-2521b). These three systems were first identified
using data from the Transiting Exoplanet Survey Satellite (TESS). TOI-2336b has
a radius of , a mass of and an orbital
period of 7.71 days. TOI-1608b has a radius of , a mass of
and an orbital period of 2.47 days. TOI-2521b has a radius
of , a mass of and an orbital period of
5.56 days. We found all these low-mass companions are inflated. We fitted a
relation between radius, mass and incident flux using the sample of known
transiting brown dwarfs and low-mass M dwarfs. We found a positive correlation
between the flux and the radius for brown dwarfs and for low-mass stars that is
weaker than the correlation observed for giant planets.Comment: 20 pages, 13 figures; submitted to MNRA
Revisiting the HD 21749 planetary system with stellar activity modelling
HD 21749 is a bright (V = 8.1 mag) K dwarf at 16 pc known to host an inner terrestrial planet HD 21749c as well as an outer sub-Neptune HD 21749b, both delivered by Transiting Exoplanet Survey Satellite (TESS). Follow-up spectroscopic observations measured the mass of HD 21749b to be 22.7 ± 2.2 M with a density of 7.0^{+1.6}_{-1.3} g cm-3, making it one of the densest sub-Neptunes. However, the mass measurement was suspected to be influenced by stellar rotation. Here, we present new high-cadence PFS RV data to disentangle the stellar activity signal from the planetary signal. We find that HD 21749 has a similar rotational time-scale as the planet's orbital period, and the amplitude of the planetary orbital RV signal is estimated to be similar to that of the stellar activity signal. We perform Gaussian process regression on the photometry and RVs from HARPS and PFS to model the stellar activity signal. Our new models reveal that HD 21749b has a radius of 2.86 ± 0.20 R, an orbital period of 35.6133 ± 0.0005 d with a mass of Mb = 20.0 ± 2.7 M and a density of 4.8^{+2.0}_{-1.4} g cm-3 on an eccentric orbit with e = 0.16 ± 0.06, which is consistent with the most recent values published for this system. HD 21749c has an orbital period of 7.7902 ± 0.0006 d, a radius of 1.13 ± 0.10 R, and a 3σ mass upper limit of 3.5 M. Our Monte Carlo simulations confirm that without properly taking stellar activity signals into account, the mass measurement of HD 21749b is likely to arrive at a significantly underestimated error bar
LHS 1815b: The First Thick-disk Planet Detected by TESS
We report the first discovery of a thick-disk planet, LHS 1815b (TOI-704b, TIC 260004324), detected in the Transiting Exoplanet Survey Satellite (TESS) survey. LHS 1815b transits a bright (V = 12.19 mag, K = 7.99 mag) and quiet M dwarf located 29.87 ± 0.02 pc away with a mass of 0.502 ± 0.015 M o˙ and a radius of 0.501 ± 0.030 R o˙. We validate the planet by combining space- and ground-based photometry, spectroscopy, and imaging. The planet has a radius of 1.088 ± 0.064 R ⊕ with a 3σ mass upper limit of 8.7 M ⊕. We analyze the galactic kinematics and orbit of the host star LHS 1815 and find that it has a large probability (P thick/P thin = 6482) to be in the thick disk with a much higher expected maximal height (Z max = 1.8 kpc) above the Galactic plane compared with other TESS planet host stars. Future studies of the interior structure and atmospheric properties of planets in such systems using, for example, the upcoming James Webb Space Telescope, can investigate the differences in formation efficiency and evolution for planetary systems between different Galactic components (thick disks, thin disks, and halo)
TESS discovery of a sub-Neptune orbiting a mid-M dwarf TOI-2136
peer reviewedWe present the discovery of TOI-2136b, a sub-Neptune planet transiting every
7.85 days a nearby M4.5V-type star, identified through photometric measurements
from the TESS mission. The host star is located pc away with a radius of
, a mass of and an
effective temperature of . We estimate its stellar rotation
period to be days based on archival long-term photometry. We confirm
and characterize the planet based on a series of ground-based multi-wavelength
photometry, high-angular-resolution imaging observations, and precise radial
velocities from CFHT/SPIRou. Our joint analysis reveals that the planet has a
radius of , and a mass measurement of $6.4\pm2.4\
M_{\oplus}$. The mass and radius of TOI2136b is consistent with a broad range
of compositions, from water-ice to gas-dominated worlds. TOI-2136b falls close
to the radius valley for low-mass stars predicted by the thermally driven
atmospheric mass loss models, making it an interesting target for future
studies of its interior structure and atmospheric properties
TESS Discovery of an Ultra-short-period Planet around the Nearby M Dwarf LHS 3844
Data from the newly commissioned Transiting Exoplanet Survey Satellite has revealed a 'hot Earth' around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of R ⊕ and orbits the star every 11 hr. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough (I = 11.9, K = 9.1) for this possibility to be investigated with transit and occultation spectroscopy. The star's brightness and the planet's short period will also facilitate the measurement of the planet's mass through Doppler spectroscopy