25 research outputs found

    The pro sequence of lactase-phlorizin hydrolase is required for the enzyme to reach the plasma membrane An intramolecular chaperone?

    Get PDF
    AbstractVarious cDNAs coding for part or all of human pre-pro lactase-phlorizin hydrolase (pre-proLPH) were transfected into COS cells and the subcellular location of the lactase-related proteins assessed. Only the complete proLPH reached the plasma membrane. LPH without the pro sequence, and a construct containing the pro sequence and the lactase domain of mature LPH, accumulated intracellularly; the pro sequence with no mature domain was secreted. We conclude that the pro sequence is important for LPH to be transported to the cell surface

    An animal model for Charcot-Marie-Tooth disease type 4B1

    Get PDF
    Charcot-Marie-Tooth disease (CMT) comprises a family of clinically and genetically very heterogeneous hereditary peripheral neuropathies and is one of the most common inherited neurological disorders. We have generated a mouse model for CMT type 4B1 using embryonic stem cell technology. To this end, we introduced a stop codon into the Mtmr2 locus within exon 9, at the position encoding amino acid 276 of the MTMR2 protein (E276X). Concomitantly, we have deleted the chromosomal region immediately downstream of the stop codon up to within exon 13. The resulting allele closely mimics the mutation found in a Saudi Arabian CMT4B1 patient. Animals homozygous for the mutation showed various degrees of complex myelin infoldings and outfoldings exclusively in peripheral nerves, in agreement with CMT4B1 genetics and pathology. Mainly, paranodal regions of the myelin sheath were affected, with a high degree of quantitative and qualitative variability between individuals. This pathology was progressive with age, and axonal damage was occasionally observed. Distal nerve regions were more affected than proximal parts, in line with the distribution in CMT. However, we found no significant electrophysiological changes, even in aged (16-month-old) mice, suggesting that myelin infoldings and outfoldings per se are not invariably associated with detectable electrophysiological abnormalities. Our animal model provides a basis for future detailed molecular and cellular studies on the underlying disease mechanisms in CMT4B1. Such an analysis will reveal how the disease develops, in particular, the enigmatic myelin infoldings and outfoldings as well as axonal damage, and provide mechanistic insights that may aid in the development of potential therapeutic approache

    Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination

    Get PDF
    The reasons for the eventual failure of repair mechanisms in multiple sclerosis are unknown. The presence of precursor and immature oligodendrocytes in some non-repairing lesions suggests a mechanism in which these cells either receive insufficient differentiation signals or are exposed to differentiation inhibitors. Jagged signalling via Notch receptors on oligodendrocyte precursor cells (OPCs) inhibits their differentiation during development and the finding that both notch and jagged are expressed in multiple sclerosis lesions has fostered the view that this signalling pathway may explain remyelination failure. In this study, we show that Notch1 is expressed on adult OPCs and that there are multiple cellular sources of its ligand Jagged1 in a rodent model of remyelination. However, despite their expression, the lesions undergo complete remyelination. To establish whether Notch-jagged signalling regulates the rate of remyelination we compared their expression profiles in young animals with those in older animals, where remyelination occurs more slowly, but could find no correlation between expression and remyelination rate. Finally we found that OPC-targeted Notch1 ablation in cuprizone-treated Plp-creER Notch1lox/lox transgenic mice yielded no significant differences in remyelination parameters between knock-out and control mice. Thus, in contrast to developmental myelination, adult expression of Notch1 and Jagged1 neither prevents nor plays a major rate-determining role in remyelination. More generally, the re-expression of developmentally expressed genes following injury in the adult does not per se imply similar functio

    Distinct disease mechanisms in peripheral neuropathies due to altered peripheral myelin protein 22 gene dosage or a Pmp22 point mutation

    Full text link
    Point mutations affecting PMP22 can cause hereditary demyelinating and dysmyelinating peripheral neuropathies. In addition, duplication and deletion of PMP22 are associated with Charcot-Marie-Tooth disease Type 1A (CMT1A) and Hereditary Neuropathy with Liability to Pressure Palsy (HNPP), respectively. This study was designed to elucidate disease processes caused by misexpression of Pmp22 and, at the same time, to gain further information on the controversial molecular function of PMP22. To this end, we took advantage of the unique resource of a set of various Pmp22 mutant mice to carry out comparative expression profiling of mutant and wild-type sciatic nerves. Tissues derived from Pmp22-/- ("knockout"), Pmp22tg (increased Pmp22 copy number), and Trembler (Tr; point mutation in Pmp22) mutant mice were analyzed at two developmental stages: (i) at postnatal day (P)4, when normal myelination has just started and primary causative defects of the mutations are expected to be apparent, and (ii) at P60, with the goal of obtaining information on secondary disease effects. Interestingly, the three Pmp22 mutants exhibited distinct profiles of gene expression, suggesting different disease mechanisms. Increased expression of genes involved in cell cycle regulation and DNA replication is characteristic and specific for the early stage in Pmp22-/- mice, supporting a primary function of PMP22 in the regulation of Schwann cell proliferation. In the Tr mutant, a distinguishing feature is the high expression of stress response genes. Both Tr and Pmp22tg mice show strongly reduced expression of genes important for cholesterol synthesis at P4, a characteristic that is common to all three mutants at P60. Finally, we have identified a number of candidate genes that may play important roles in the disease process or in myelination per se

    The induced transcription of a human IFN-alpha gene requires not more than 117 base pairs of 5'-flanking sequence

    No full text
    Ragg H, Weidle U, Mantei N, Weissmann C. The induced transcription of a human IFN-alpha gene requires not more than 117 base pairs of 5'-flanking sequence. Presented at the Second International TNO Meeting on the Biology of the Interferon System, Rotterdam
    corecore