203 research outputs found

    Ways of Experiencing Sustainable Design in Engineering: A Phenomenographic Investigation

    Get PDF

    Analysis of the instantaneous Bethe-Salpeter equation for qqˉq\bar{q}-bound-states

    Full text link
    We investigate the structure of the instantaneous Bethe-Salpeter equation for qqˉq\bar{q}-bound states in the general case of unequal quark masses and develop a numerical scheme for the calculation of mass spectra and Bethe-Salpeter amplitudes. In order to appreciate the merits of the various competing models beyond the reproduction of the mass spectra we present explicit formulas to calculate electroweak decays. The results for an explicit quark model will be compared to experimental data in a subsequent paperComment: 11 pages, RevTeX, TK-93-1

    Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering

    Full text link
    We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of Fa for neutrino experiments. We show how well \minerva, a new approved experiment at FNAL, can measure Fa. We show the that Fa has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check Fa extracted from neutrino scattering.Comment: Presented by Howard Budd at NuInt04, Mar. 2004, Laboratori Nazionali del Gran Sasso - INFN - Assergi, Ital

    (In-)Consistencies in the relativistic description of excited states in the Bethe-Salpeter equation

    Get PDF
    The Bethe-Salpeter equation provides the most widely used technique to extract bound states and resonances in a relativistic Quantum Field Theory. Nevertheless a thorough discussion how to identify its solutions with physical states is still missing. The occurrence of complex eigenvalues of the homogeneous Bethe-Salpeter equation complicates this issue further. Using a perturbative expansion in the mass difference of the constituents we demonstrate for scalar fields bound by a scalar exchange that the underlying mechanism which results in complex eigenvalues is the crossing of a normal (or abnormal) with an abnormal state. Based on an investigation of the renormalization of one-particle properties we argue that these crossings happen beyond the applicability region of the ladder Bethe-Salpeter equation. The implications for a fermion-antifermion bound state in QED are discussed, and a consistent interpretation of the bound state spectrum of QED is proposed.Comment: 39 pages, 14 figures, LaTeX2e, uses amssymb, minor changes, references added, to appear in Annals Phy

    Inconsistencies of Massive Charged Gravitating Higher Spins

    Get PDF
    We examine the causality and degrees of freedom (DoF) problems encountered by charged, gravitating, massive higher spin fields. For spin s=3/2, making the metric dynamical yields improved causality bounds. These involve only the mass, the product eM_P of the charge and Planck mass and the cosmological constant \Lambda. The bounds are themselves related to a gauge invariance of the timelike component of the field equation at the onset of acausality. While propagation is causal in arbitrary E/M backgrounds, the allowed mass ranges of parameters are of Planck order. Generically, interacting spins s>3/2 are subject to DoF violations as well as to acausality; the former must be overcome before analysis of the latter can even begin. Here we review both difficulties for charged s=2 and show that while a g-factor of 1/2 solves the DoF problem, acausality persists for any g. Separately we establish that no s=2 theory --DoF preserving or otherwise -- can be tree unitary.Comment: 25 pages, late

    On the instantaneous Bethe-Salpeter equation

    Get PDF
    We present a systematic algebraic and numerical investigation of the instantaneous Bethe-Salpeter equation. Emphasis is placed on confining interaction kernels of the Lorentz scalar, time component vector, and full vector types. We explore stability of the solutions and Regge behavior for each of these interactions, and conclude that only time component vector confinement leads to normal Regge structure and stable solutions.Comment: Latex (uses epsf macro), 26 pages of text, 12 postscript figures included

    Massive Spin 3/2 Electrodynamics

    Get PDF
    We study the general non-minimally coupled charged massive spin 3/2 model both for its low energy phenomenological properties and for its unitarity, causality and degrees of freedom behaviour. When the model is viewed as an effective theory, its parameters (after ensuring the correct excitation count) are related to physical characteristics, such as the magnetic moment g factor, by means of low energy theorems. We also provide the corresponding higher spin generalisation. Separately, we consider both low and high energy unitarity, as well as the causality aspects of our models. None (including truncated N=2 supergravity) is free of the minimal model's acausality.Comment: 23 pages, 1 figure, LaTeX and axodraw.sty, novel Majorana-type term included; results unaltere

    Whole home exercise intervention for depression in older care home residents (the OPERA study) : a process evaluation

    Get PDF
    Background: The ‘Older People’s Exercise intervention in Residential and nursing Accommodation’ (OPERA) cluster randomised trial evaluated the impact of training for care home staff together with twice-weekly, physiotherapist-led exercise classes on depressive symptoms in care home residents, but found no effect. We report a process evaluation exploring potential explanations for the lack of effect. Methods: The OPERA trial included over 1,000 residents in 78 care homes in the UK. We used a mixed methods approach including quantitative data collected from all homes. In eight case study homes, we carried out repeated periods of observation and interviews with residents, care staff and managers. At the end of the intervention, we held focus groups with OPERA research staff. We reported our first findings before the trial outcome was known. Results: Homes showed large variations in activity at baseline and throughout the trial. Overall attendance rate at the group exercise sessions was low (50%). We considered two issues that might explain the negative outcome: whether the intervention changed the culture of the homes, and whether the residents engaged with the intervention. We found low levels of staff training, few home champions for the intervention and a culture that prioritised protecting residents from harm over encouraging activity. The trial team delivered 3,191 exercise groups but only 36% of participants attended at least 1 group per week and depressed residents attended significantly fewer groups than those who were not depressed. Residents were very frail and therefore most groups only included seated exercises. Conclusions: The intervention did not change the culture of the homes and, in the case study homes, activity levels did not change outside the exercise groups. Residents did not engage in the exercise groups at a sufficient level, and this was particularly true for those with depressive symptoms at baseline. The physical and mental frailty of care home residents may make it impossible to deliver a sufficiently intense exercise intervention to impact on depressive symptoms

    The angular distribution of the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n

    Get PDF
    The reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n is very important for low-energy (Eν60E_\nu \lesssim 60 MeV) antineutrino experiments. In this paper we calculate the positron angular distribution, which at low energies is slightly backward. We show that weak magnetism and recoil corrections have a large effect on the angular distribution, making it isotropic at about 15 MeV and slightly forward at higher energies. We also show that the behavior of the cross section and the angular distribution can be well-understood analytically for Eν60E_\nu \lesssim 60 MeV by calculating to O(1/M){\cal O}(1/M), where MM is the nucleon mass. The correct angular distribution is useful for separating νˉe+pe++n\bar{\nu}_e + p \to e^+ + n events from other reactions and detector backgrounds, as well as for possible localization of the source (e.g., a supernova) direction. We comment on how similar corrections appear for the lepton angular distributions in the deuteron breakup reactions νˉe+de++n+n\bar{\nu}_e + d \to e^+ + n + n and νe+de+p+p\nu_e + d \to e^- + p + p. Finally, in the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n, the angular distribution of the outgoing neutrons is strongly forward-peaked, leading to a measurable separation in positron and neutron detection points, also potentially useful for rejecting backgrounds or locating the source direction.Comment: 10 pages, including 5 figure

    On the broken gauge, conformal and discrete symmetries in particle physics

    Get PDF
    Relationships between gauge, conformal and discrete symmetries in particle physics are analysed. We study also the effect of the electroweak mixing on the cancellation of SU(2) anomalous actions. It is shown that the relation theta_{W} = 2(theta_{12}+theta_{23}+theta_{13}) between the Weinberg angle and the Cabibbo-Kobayashi-Maskawa angles should be satisfied and this effect is completely defined by the mixing of Dirac fermions. We compare two mechanisms of the spontaneous breaking of gauge symmetry, discuss the renormalizability of theories, and argue for the existence of the Majorana fermions necessary to remove the SU(2) anomalous action. The fate of the majoron and the spontaneously broken lepton number is discussed. We also show the compatibility of the boson and fermion mixings with Dyson-Schwinger equations.Comment: 27 pages, LaTeX style; v2: published version, two figures adde
    corecore