7,937 research outputs found

    Interference fringes with maximal contrast at finite coherence time

    Get PDF
    Interference fringes can result from the measurement of four-time fourth-order correlation functions of a wave field. These fringes have a statistical origin and, as a consequence, they show the greatest contrast when the coherence time of the field is finite. A simple acoustic experiment is presented in which these fringes are observed, and it is demonstrated that the contrast is maximal for partial coherence. Random telegraph phase noise is used to vary the field coherence in order to highlight the problem of interpreting this interference; for this noise, the Gaussian moment theorem may not be invoked to reduce the description of the interference to one in terms of first-order interference.M.W. Hamilto

    In-depth Chandra study of the AGN feedback in Virgo elliptical galaxy M84

    Full text link
    Using deep Chandra observations of M84 we study the energetics of the interaction between the black hole and the interstellar medium of this early-type galaxy. We perform a detailed two dimensional reconstruction of the properties of the X-ray emitting gas using a constrained Voronoi tessellation method, identifying the mean trends and carrying out the fluctuation analysis of the thermodynamical properties of the hot ISM. In addition to the PV work associated with the bubble expansion, we identify and measure the wave energy associated with the mildly supersonic bubble expansion. We show that, depending on the age of the cavity and the associated wave, the waves can have a substantial contribution to the total energy release from the AGN. The energy dissipated in the waves tends to be concentrated near the center of M84 and in the direction perpendicular to the bubble outflow, possibly due to the interference of the waves generated by the expansion of northern and southern bubbles. We also find direct evidence for the escape of radio plasma from the ISM of the host galaxy into the intergalactic medium.Comment: 6 pages, ApJ in press, Nov. 1 200

    BDDC and FETI-DP under Minimalist Assumptions

    Full text link
    The FETI-DP, BDDC and P-FETI-DP preconditioners are derived in a particulary simple abstract form. It is shown that their properties can be obtained from only on a very small set of algebraic assumptions. The presentation is purely algebraic and it does not use any particular definition of method components, such as substructures and coarse degrees of freedom. It is then shown that P-FETI-DP and BDDC are in fact the same. The FETI-DP and the BDDC preconditioned operators are of the same algebraic form, and the standard condition number bound carries over to arbitrary abstract operators of this form. The equality of eigenvalues of BDDC and FETI-DP also holds in the minimalist abstract setting. The abstract framework is explained on a standard substructuring example.Comment: 11 pages, 1 figure, also available at http://www-math.cudenver.edu/ccm/reports

    On Influence of Intensive Stationary Electromagnetic Field on the Behavior of Fermionic Systems

    Full text link
    Exact solutions of Schroedinger and Pauli equations for charged particles in an external stationary electromagnetic field of an arbitrary configuration are constructed. Green functions of scalar and spinor particles are calculated in this field. The corresponding equations for complex energy of particles bounded by short range potential are deduced. Boundary condition typical for delta - potential is not used in the treatment. Explicit analytical expressions are given for the shift and width of a quasistationary level for different configurations of the external field. The critical value of electric field in which the idea of quasistationary level becomes meaningless is calculated. It is shown that the common view on the stabilizing role of magnetic field concerns only scalar particles.Comment: 15 pages, no figures, LaTeX2

    Multispace and Multilevel BDDC

    Full text link
    BDDC method is the most advanced method from the Balancing family of iterative substructuring methods for the solution of large systems of linear algebraic equations arising from discretization of elliptic boundary value problems. In the case of many substructures, solving the coarse problem exactly becomes a bottleneck. Since the coarse problem in BDDC has the same structure as the original problem, it is straightforward to apply the BDDC method recursively to solve the coarse problem only approximately. In this paper, we formulate a new family of abstract Multispace BDDC methods and give condition number bounds from the abstract additive Schwarz preconditioning theory. The Multilevel BDDC is then treated as a special case of the Multispace BDDC and abstract multilevel condition number bounds are given. The abstract bounds yield polylogarithmic condition number bounds for an arbitrary fixed number of levels and scalar elliptic problems discretized by finite elements in two and three spatial dimensions. Numerical experiments confirm the theory.Comment: 26 pages, 3 figures, 2 tables, 20 references. Formal changes onl

    Report on the first round of the Mock LISA Data Challenges

    Get PDF
    The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine challenges consisting of data sets containing simulated gravitational-wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. All of the challenges had at least one entry which successfully characterized the signal to better than 95% when assessed via a correlation with phasing ambiguities accounted for. Here, we describe the challenges, summarize the results and provide a first critical assessment of the entries

    Duality Between Spatial and Angular Shift in Optical Reflection

    Get PDF
    We report a unified representation of the spatial and angular Goos-Hanchen and Imbert-Fedorov shifts that occur when a light beam reflects from a plane interface. We thus reveal the dual nature of spatial and angular shifts in optical beam reflection. In the Goos-Hanchen case we show theoretically and experimentally that this unification naturally arises in the context of reflection from a lossy surface (e.g., a metal).Comment: 4 pages, 3 figure

    Two-photon interference with two independent pseudo-thermal sources

    Get PDF
    The nature of two-photon interference is a subject that has aroused renewed interest in recent years and is still under debate. In this paper we report the first observation of two-photon interference with independent pseudo-thermal sources in which sub-wavelength interference is observed. The phenomenon may be described in terms of the classical statistical distribution of the two sources and their optical transfer functions.Comment: Phys. Rev. A 74, 053807 (2006

    Coherence loss and revivals in atomic interferometry: A quantum-recoil analysis

    Full text link
    The coherence effects induced by external photons coupled to matter waves inside a Mach-Zehnder three-grating interferometer are analyzed. Alternatively to atom-photon entanglement scenarios, the model considered here only relies on the atomic wave function and the momentum shift induced in it by the photon scattering events. A functional dependence is thus found between the observables, namely the fringe visibility and the phase shift, and the transversal momentum transfer distribution. A good quantitative agreement is found when comparing the results obtained from our model with the experimental data.Comment: 18 pages, 4 figure
    • …
    corecore