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Interference fringes can result from the measurement of four-time fourth-order correlation functions
of a wave field. These fringes have a statistical origin and, as a consequence, they show the greatest
contrast when the coherence time of the field is finite. A simple acoustic experiment is presented in
which these fringes are observed, and it is demonstrated that the contrast is maximal for partial
coherence. Random telegraph phase noise is used to vary the field coherence in order to highlight the
problem of interpreting this interference; for this noise, the Gaussian moment theorem may not be
invoked to reduce the description of the interference to one in terms of first-order interference.
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FIG. 1. Two different time regimes are needed for the evalu-
ation of G�4��t; t� �; �; 0�, which leads to a sharp corner in this
function. In (a), where t < �, there are three time intervals in
which the fluctuations in the field can be considered statisti-
cally independent 
0; t�, 
t; ��, 
�; t� ��. However, if t > � the
set of intervals shown in (a) ceases to be statistically inde-
pendent and we must consider the intervals shown in (b), i.e.,
The four-time correlation function of interest is
G�4��t; t� �; �; 0� � hE��t�E��t� ��E���E�0�i. One of


0; ��, 
�; t�, 
t; t� ��. The correlation must be calculated
separately for the cases (a) and (b).
The familiar interference that is observed in interfer-
ometers such as Fabry-Perot and Michelson interferome-
ters is just the first in a hierarchy of orders of interference
and is described by the autocorrelation function of
the wave field, G�2��t; 0� � hE��t�E�0�i. Second-order
interference results when the signal depends on a fourth-
order correlation function, such as the intensity autocor-
relation function G�4��0; t; t; 0� � hE��0�E��t�E�t�E�0�i �
hI�t�I�0�i. This correlation was measured in the classic
optical experiment by Hanbury-Brown and Twiss [1],
where a beam was split into two parts and the rate of
photon coincidences detected between the two beams was
measured. However, one normally would not expect to see
interference fringes in G�4��0; t; t; 0� because each of the
two physical fields is measured by an intensity detector;
the direct measurement of intensity destroys information
about the phase difference between the fields. Certain
uniquely quantum mechanical light fields provide an im-
portant exception to this—with pairs of correlated and
indistinguishable photons interference fringes can appear
in the photon coincidence rate [i.e., in G�4��0; t; t; 0�] even
though no first-order interference is observed [2]. For the
moment, however, we consider only fields that can be
represented classically and have some associated stochas-
tic process which makes them partially coherent.

With four-time correlation functions, one can see in-
terference fringes with purely classical fields. These
fringes are particularly interesting because they show
greatest contrast when the fields are partially first-order
coherent, rather than fully coherent or incoherent. In this
Letter, I demonstrate these fringes with a simple acoustic
experiment in which the coherence time of the sound can
be continuously varied. Although I describe an acoustic
experiment, the inspiration for this work comes from
nonlinear optics and the theoretical ideas expressed in
the introductory paragraphs apply to any scalar wave
field. To the extent that polarization can be ignored,
both light and sound can be represented as scalar waves.
0031-9007=02=89(17)=173901(4)$20.00 
the time arguments is taken to be zero because the sto-
chastic processes involved are assumed to be stationary,
and ergodicity is assumed also. It is important to note that
we are ignoring spatial correlations in what follows: we
consider briefly some issues regarding spatial coherence at
the conclusion.

In a spectroscopic two-photon absorption experiment
that incorporates a retroreflecting mirror [3], so that the
laser beam is passed twice through the absorber, the two-
photon absorption rate is proportional to the Fourier
transform of G�4��t; t� �; �; 0� [4],

W�!� �
Z 1

	1
exp�	i!t�G�4��t; t� �; �; 0�dt: (1)

Here � is the time delay that the light suffers in going
from the absorber to the retroreflecting mirror and back
again. Now there is only one detector, the two-photon
absorber, so the relative phase information of the fields is
preserved. As long as there is a stochastic process to
introduce some incoherence, there will be a sharp corner
in the function G�4� at t � � (see Fig. 1). This corner
introduces oscillatory terms into W�!� with period �	1

[5]. The oscillations in W�!� are second-order interfer-
ence fringes. If one were to monitor the value of W�!�
2002 The American Physical Society 173901-1
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at a given frequency !, one would see this value oscillate
as the delay time is varied. This would be a direct
demonstration that the fringes satisfy the operational
definition of interference fringes shown in Fig. 2, but it
can be more practical to simply observe the oscillations in
the spectrum W�!� itself. The existence of these fringes
depends on the stochastic process; if it were absent, the
correlation function would be a product of sinusoids,
whose Fourier transform is just a sum of delta functions.

The existence of these fringes in two-photon absorp-
tion remains only a prediction [5] , but similar fringes
have been observed in four-wave mixing and coherent
Raman spectroscopy experiments [6–8]. What has never
been demonstrated is that these fringes that arise from
four-time correlations have maximum contrast if the field
is partially coherent; that is, their existence requires the
existence of the stochastic process. In the experiments
[6,7], the signal was proportional to the Fourier transform
of a four-time sixth-order correlation function. The
fringes that were seen were termed radiation difference
oscillations and were interpreted by appealing to the
Gaussian moment theorem [9]. This was possible since
in that work pulsed dye lasers were used, and it was
reasonable to assume that the underlying stochastic pro-
cess had a Gaussian density function. The independent
fluctuations in the many laser modes that are present give
rise to Gaussian statistics according to the central limit
theorem. Thus, the sixth-order correlations were reduced
to products of second-order correlation functions; that is,
of first-order interferences.

However, such an interpretation would not have been
possible were the stochastic process non-Gaussian, which
is why we have chosen a random telegraph process [10]
with a two-peaked density function for the experiment
described here. In a random telegraph process, the noisy
variable switches randomly between two well defined
values and the number of transitions in a given time is a
Poisson random variable. The average time that the vari-
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FIG. 2. The operational definition of interference fringes; two
wave fields E1 and E2, one retarded by a time �, are combined
in physical effect which is measurable through some output
signal. The generation of this output signal might also involve
some computation, as happens when an intensity autocorrela-
tion is measured. If the signal varies nonmonotonically with �
we have interference fringes.
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able spends at either of the values is the dwell time T. If
the noise is applied to the phase of the field and the size of
the phase jumps is �, T=2 can be identified with the
coherence time.

A relatively low frequency wave, such as an acoustic or
radio wave, allows one to directly measure each of the
fields simultaneously and then compute W�!�, which is
defined by Eq. (1). If there is only one source of the field,
one could, of course, measure time series data for the field
at just one place and still compute W�!�. However, we
choose to measure the field from a single source at two
places, which is equivalent to two times. This allows the
second-order fringes to be used to measure the difference
in the distances between two points and the source,
provided the wave speed is known. Thus, the fact
that the periodicity of the fringes is determined by the
delay � suggests that measuring the Fourier transform of
G�4��t; t� �; �; 0� might have some utility as a ranging
technique.

Accordingly, a speaker and two microphones were set
up in an anechoic chamber such that the distance from the
speaker to each of the two microphones differed by 50 cm.
The speaker was a moving-coil dome ‘‘tweeter’’ with a
frequency range from 1.5 to 20 kHz and rms input power
rating of 5 W. The microphones were both simple electret
microphones. The sinusoidal signal from a function gen-
erator (Hewlett Packard HP3325) was applied to the
speaker with a frequency of 9 kHz and an amplitude of
40 mV at the speaker (nominal impedance 8
). Applied
to the signal, via the phase modulation input of the
HP3325, was a random telegraph signal of variable dwell
time T. The size � of the phase jump was also variable.
This modulation signal was produced by a voltage noise
generator that has been previously described in the litera-
ture [11]. The two microphone signals were amplified
(Tektronix 7A22 amplifiers) and recorded simultaneously
at 50� 103 samples=s and 12-bit resolution. From the
recorded microphone signals, W�!� was calculated. The
delay time � is now the time that the sound takes to travel
the 50 cm spacing between the microphones. This calcu-
lation is speeded up by noting that we, in fact, calculate
the power spectrum of the product of fields H�t; �� �
E�t�E�t� ��; this is just the modulus squared of the
transform of H�t; ��, which is rapidly computed with a
standard fast Fourier transform algorithm. Figure 3
shows a part of one of these spectra. The oscillations
seen in the wings of the spectrum are the second-order
fringes that we seek.

The spacing of the fringes in Fig. 3 is 720 20 Hz,
which is in reasonable agreement with the reciprocal of
the delay time � � 1:43 ms, as expected from the theory
[5]. It can be seen that the peak is somewhat asymmetric;
the fringes are much less visible on the high frequency
side. According to Ref. [5], for � radian phase jumps the
spectrum has the form of a Lorentzian with modulated
wings;
173901-2



FIG. 4. The ratios (expressed logarithmically) between the
maxima and nearest minima for the two fringes (see Fig. 3) at
14.7 kHz (circles) and 16.8 kHz (crosses) as a function of the
random telegraph dwell time T. The values of � and � for all
data points are the same as in Fig. 3.

FIG. 3. The Fourier transform of G�4��t; t� �; �; 0�, for � �
1:34 ms, T � 34 ms, and � � �. The transform shown is the
average of four transforms, each using 32� 103 samples. The
peak at 18 kHz is due to the 9 kHz frequency of the sound. The
second-order interference fringes are the oscillations on the
wings of this peak. The inset shows W�!� when the random
telegraph phase modulation is switched off.
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W�!� / 	
exp�	4�=T�

�
sin���� �

4=T

�4=T�2 	�2

� f1	 exp�	4�=T�
cos���� 	 ��T=4� sin�����g;

(2)
where �� !	 2!0 and !0 � 2�� 9 kHz, i.e., the fre-
quency of the sound wave. This spectrum is symmetric.
The observed asymmetry is attributed to the inability of
the speaker to properly reproduce the phase fluctuation.
The amplitude fluctuation that results is correlated with
the phase jump; the correlated amplitude and phase
modulations lead to an asymmetric spectrum. The theo-
retical relation shown is the two-photon absorption spec-
trum, in whose derivation the atomic spectral response
plays a role that is analogous to that of a window function,
often used when Fourier transforming a finite series of
data. As we use no window function when using the fast
Fourier transform to calculate the spectra shown in Fig. 3,
we must consider the two-photon absorption spectrum in
the limit where the width of the atomic response tends to
zero in order to arrive at Eq. (2).

The key evidence that the fringes shown in Fig. 3 are
those associated with G�4��t; t� �; �; 0� is that the fringe
contrast reaches a maximum at finite T. Rather arbitrarily
we choose two maxima (at 14.7 and 16.8 kHz) and the
minima immediately to the high frequency side of these
maxima. The ratio of maximum to minimum can be read
off graphs such as Fig. 3, and the logarithm of these ratios
is shown as a function of log10T in Fig. 4. It is apparent
that the coherence time for maximum fringe contrast
depends on the distance of the fringe from the main
peak at 18 kHz. The contrast maximum of the fringe at
16.8 kHz is not seen as clearly as that for the fringe at
14.7 kHz, because in the current apparatus we have an
173901-3
upper limit on T of about 300 ms. The random telegraph
voltage noise source incorporates a photomultiplier which
detects photons from a small incandescent bulb. The
detection of a photon triggers a phase jump in the voltage
output which then is used as the modulation input for the
HP3325. The dark current of this photomultiplier sets the
upper limit on T. In any case, larger values of T would
require much more data because the time series data sets
must be long enough to incorporate some phase jumps,
and also there should be enough data sets to provide some
averaging. We can, however, simply turn off the random
telegraph noise source so that T is effectively infinite. The
result of this is shown in the inset in Fig. 3. The fringes
vanish. In order to test that the assumption of stationarity
for the stochastic process was valid, we explicitly calcu-
lated the four-time fourth-order correlation function for
several consecutive subsets of many full data sets (i.e., the
time series for given dwell times). The correlation func-
tions from the subsets were essentially the same, and that
the average of their Fourier transforms was indistinguish-
able from the function W calculated in the manner de-
scribed above. This is as one would expect if the
correlation functions were stationary.

We have confirmed the existence of the fringes for other
values of �, but we concentrate on the case of � � �
because in this case the (first-order) coherence is able to
vary from complete to nonexistent. Random telegraph
phase modulation results in the modulated wave having
a power spectrum consisting of a delta function carrier
component and a broadband Lorentzian shaped compo-
nent. From Ref. [12] this is

S�!� � cos2
�
�
2

�
��!	!0�

� sin2
�
�
2

�
4=T

�4=T�2 	 �!	!0�
2 : (3)

The relative amounts of power in these components varies
173901-3
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with �; for � � � all of the power is in the broadband
component, and the coherent component is completely
suppressed. At other values of � a coherent component
always remains, regardless of how short the dwell time T
might be.

An analogy to Fraunhofer diffraction [13], developed
in the context of multiphoton absorption, is of some help
in interpreting our experiment. In this analogy the corre-
lation function G�4��t; t� �; �; 0� represents the transmis-
sion function of an aperture which might be formed by a
coating of varying transmission applied to a transparent
substrate. The ‘‘transmission function’’ has sharp corners
and its Fourier transform, i.e., the ‘‘diffraction pattern,’’
will therefore show fringes. Although this analogy indi-
cates that the fringes will exist if G�4��t; t� �; �; 0� has a
sharp corner (which follows from the presence of a sto-
chastic process), it does not, however, provide a satisfac-
tory explanation for the maximum contrast occurring at
finite correlation time. A good heuristic explanation is
lacking still.

The four-wave mixing experiments [6,7] used the ex-
istence of the fringes to extract data about dephasing
times of the molecules in the liquid samples. In essence,
the fringes are modulated by the material properties. The
results of this acoustic experiment imply that picking a
field coherence time which maximizes the fringe contrast
will improve the accuracy of physical parameters that are
extracted from the fringe data. In the analysis of the four-
wave mixing experiments, there was excellent agreement
between theory and experiment. To a certain extent this
agreement is unsurprising because the second-order
fringes are predicted to occur with any type of stochastic
field [5]. On the other hand, the analysis and interpreta-
tion of the four-wave mixing experiments depends on
factorizing the higher-order correlation functions with
the Gaussian moment theorem: but now we see that such
fringes will occur even if the stochastic processes are
non-Gaussian. This raises issues which go beyond the
scope of this Letter: to what extent would deviations
from Gaussian statistics make the measured quantities
vary, and how are the fringes then to be interpreted?

The wave fields that we have considered so far are
purely classical, but it is worthwhile to look at fields
that are uniquely quantum mechanical to better put this
experiment in context. It is possible to observe interfer-
ence fringes in experiments with correlated photon pairs
[2], where the modes into which the two photons are
emitted are mixed at a beam splitter. When the photon
coincidence rate is measured between the two fields leav-
173901-4
ing the beam splitter, interference fringes are seen as the
beam splitter is moved. This is interpreted as a first-order
interference of quantum probability amplitudes even
though it is a second-order interference measurement
from an operational point of view. In contrast, our ex-
periment does not admit, in its interpretation, such an
easy reduction of the order of interference, unless it is to
the product of fields E�t�E�t� �� which has no intuitively
obvious significance. Now we return to the issue of spatial
correlations. If the intensity spatial autocorrelation func-
tion is considered, second-order interference fringes may
be observed if the field has underlying first-order inter-
ference fringes [14]. Similarly, we would also expect to
see, in the temporal correlation, second-order fringes due
to beats if the field had two or more discrete frequency
components. In neither of these cases would the second-
order fringes be expected to show the behavior illustrated
in Fig. 4.

I thank the Defence Science and Technology
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