95 research outputs found
Recommended from our members
Tracing diagnosis trajectories over millions of patients reveal an unexpected risk in schizophrenia.
The identification of novel disease associations using big-data for patient care has had limited success. In this study, we created a longitudinal disease network of traced readmissions (disease trajectories), merging data from over 10.4 million inpatients through the Healthcare Cost and Utilization Project, which allowed the representation of disease progression mapping over 300 diseases. From these disease trajectories, we discovered an interesting association between schizophrenia and rhabdomyolysis, a rare muscle disease (incidence < 1E-04) (relative risk, 2.21 [1.80-2.71, confidence interval = 0.95], P-value 9.54E-15). We validated this association by using independent electronic medical records from over 830,000 patients at the University of California, San Francisco (UCSF) medical center. A case review of 29 rhabdomyolysis incidents in schizophrenia patients at UCSF demonstrated that 62% are idiopathic, without the use of any drug known to lead to this adverse event, suggesting a warning to physicians to watch for this unexpected risk of schizophrenia. Large-scale analysis of disease trajectories can help physicians understand potential sequential events in their patients
Recommended from our members
Harvest: A Scalable, Customizable Discovery and Access System ; CU-CS-732-94
Recommended from our members
Scalable Internet Resource Discovery: Research Problems and Approaches ; CU-CS-679-93
Storage Efficient Substring Searchable Symmetric Encryption
We address the problem of substring searchable encryption. A single user produces a big stream of data and later on wants to learn the positions in the string that some patterns occur. Although current techniques exploit auxiliary data structures to achieve efficient substring search on the server side, the cost at the user side may be prohibitive. We revisit the work of substring searchable encryption in order to reduce the storage cost of auxiliary data structures. Our solution entails a suffix array based index design, which allows optimal storage cost O (n) with small hidden factor at the size of the string n. We analyze the security of the protocol in the real ideal framework. Moreover, we implemented our scheme and the state of the art protocol [7] to demonstrate the performance advantage of our solution with precise benchmark results
A survey and classification of storage deduplication systems
The automatic elimination of duplicate data in a storage system commonly known as deduplication is increasingly accepted as an effective technique to reduce storage costs. Thus, it has been applied to different storage types, including archives and backups, primary storage, within solid state disks, and even to random access memory. Although the general approach to deduplication is shared by all storage types, each poses specific challenges and leads to different trade-offs and solutions. This diversity is often misunderstood, thus underestimating the relevance of new research and development.
The first contribution of this paper is a classification of deduplication systems according to six criteria that correspond to key design decisions: granularity, locality, timing, indexing, technique, and scope.
This classification identifies and describes the different approaches used for each of them. As a second contribution, we describe which combinations of these design decisions have been proposed and found more useful for challenges in each storage type. Finally, outstanding research challenges and unexplored design points are identified and discussed.This work is funded by the European Regional Development Fund (EDRF) through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the Fundacao para a Ciencia e a Tecnologia (FCT; Portuguese Foundation for Science and Technology) within project RED FCOMP-01-0124-FEDER-010156 and the FCT by PhD scholarship SFRH-BD-71372-2010
- …