
Storage Efficient Substring Searchable Symmetric Encryption
Iraklis Leontiadis

∗

Ecole Polytechnique Federale de Lausanne (EPFL)

School of Computer and Communication Sciences

iraklis.leontiadis@epfl.ch

Ming Li

University of Arizona

Department of Electrical and Computer Engineering

lim@email.arizona.edu

ABSTRACT
We address the problem of substring searchable encryption. A single

user produces a big stream of data and later on wants to learn the

positions in the string that some patterns occur. Although current

techniques exploit auxiliary data structures to achieve efficient

substring search on the server side, the cost at the user side may be

prohibitive. We revisit the work of substring searchable encryption

in order to reduce the storage cost of auxiliary data structures. Our

solution entails a suffix array based index design, which allows

optimal storage cost O (n) with small hidden factor at the size of

the string n. Moreover, we implemented our scheme and the state

of the art protocol [7] to demonstrate the performance advantage

of our solution with precise benchmark results.

CCS CONCEPTS
• Security and privacy → Database and storage security; Se-
curity protocols;

KEYWORDS
substring searchable encryption, suffix array, secure outsourced

storage, compression index, privacy

ACM Reference format:
Iraklis Leontiadis and Ming Li. 2018. Storage Efficient Substring Searchable

Symmetric Encryption. In Proceedings of 6th International Workshop on
Security in Cloud Computing, Incheon, Republic of Korea, June 4, 2018 (SCC’18),
15 pages.

https://doi.org/10.1145/3201595.3201598

1 INTRODUCTION
Nowadays, there is a flourish of protocols delegated to run by an

untrusted coalition of servers, systems, services, called hereafter

the cloud. Due to the untrusted nature of the cloud, users seek to

protect the privacy and security of their data with cryptographic

primitives. The cloud on the other hand offers an economy of scale

with the impressive resources it acquires, ranging from software

to hardware. Usually users need to perform a search on their data.

Tailored protocols for secure searchable encryption have been pro-

posed in the literature, whereby single or multiple users upload

∗
This work was done mostly while the author was affiliated with UofA.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SCC’18, June 4, 2018, Incheon, Republic of Korea
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5759-3/18/06. . . $15.00

https://doi.org/10.1145/3201595.3201598

encrypted documents, with some auxiliary data structure called an

index, allowing the cloud to correctly return documents contain-

ing a single, multiple or a boolean function of keywords, without

compromising index, query, and documents privacy.

While keyword based search protocols are quite common in a

large range of applications, they cannot efficiently address all the

possible queries a user submits to the cloud. Substring based queries

have come to the forefront due to the ubiquitousness of devices and

the progress in storage technology. Devices produce a big stream

of data, which needs to be queried later on with substring based
queries. Namely a substring query for a stream of data, consists

of a substring of the stream and the result is the position of the

substring in the big stream, or/and the number of occurrences of

multiple substrings.

Applications. In a health-care application, data enclaves which

hold giant stream of medical information such as DNA sequencing

are asked to answer substring queries by medical labs. The possi-

ble position of a substring in the whole DNA sequence of a single

person gives information about predisposition to diseases. As such,

it is treated as personal sensitive information and should be pro-

tected. Nowadays, the sequencing process is possible thanks to the

progress of computers. Online services offer DNA sequencing to

institutions and individuals. In the logging systems scenario, com-

panies, institutions and organizations produce log data of giant size.

The logs are recorded and uploaded in a cloud infrastructure to take

advantage of the cheap storage space. Log data are often searched to

identify malicious substring patterns. The position of the suspicious

searched string token will act as a bookmark to further download

the logs data, which proceed and succeed that position for further

investigation. Deep packet inspection (DPI) is another application

whereby a gateway, firewall, or Intrusion Detection System (IDS)

on behalf of a user is looking for prohibitive content on a bigger

stream. In general, the vast amount of information renders sub-

string queries a real challenge and reducing the storage cost of the

encrypted index would increase the performance of such services.

Protecting the privacy of the data stream and the substring query,

while allowing an untrusted cloud to correctly answer substring

matching pattern efficiently and securely is not trivial. Following

the searchable encryption approach, separating the data itself from

the index, results in a prohibitive storage index costO (n2), where n
is the size of the stream. The index consists of all possible substrings

of a stream of data of size n and the encrypted data are the positions

of the substring. Recently, the authors in [7] proposed a solution

that asymptotically achieves O (n) storage costs by exploiting the

auxiliary data structure of the suffix tree. However the asymptotic

costs of O (n) hide a constant factor that can be roughly up to 20

[1, 3, 24] for the construction of the suffix tree due to the complexity

of the tree and the extra pointers to traverse a tree. Moreover

the suffix tree based approach leaks unnecessary information that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211982232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3201595.3201598
https://doi.org/10.1145/3201595.3201598

eventually can reveal all the encrypted positions of the substrings.

Following a different approach other than auxiliary index based

methods, the authors in [12] achieve to hide the extra leakage at the

cost of fixed length substring patterns. The neat of their solution

lies on the design of subset sum problems tailored to the positions of

specific substrings, so as to the cloud can solve it partially. However

this comes at the cost of small constant substring query length

during the execution of the protocol.

Our goal, which launches our research is to reduce the increased

size of index for substring queries, which has to be computed once

and be kept at the cloud during the entire lifetime of the protocol.

Even a small improvement would have big impact as the data to be

indexed for substring queries span to million of elements. Moreover,

besides the cloud side cost cuts, the client will also be positively

affected as the smaller the size of the index it is outsourced, the less

the charges clients commit to the cloud.

Idea. After encrypting the suffix tree of Chase scheme [7], the

encrypted structure leaks a lot of information concerning the inter-

nal structure of the tree as number of leaves, children and double

“touched” branches. The authors suggested a dummy node policy in

order to hide as much information as possible. After constructing

the suffix tree with N nodes, the suffix tree is filled up with 2n − N
internal nodes. To each node with less than σ children, where σ
is the size of the vocabulary, up to σ dummy nodes are appended.

Encrypting all these dummy blocks drastically increases the storage

overhead and subsequently the communication cost of the protocol

for index construction.

Our core idea lies at the properties of a suffix array based index-

ing. A suffix array contains information about the position of each

suffix of a string and has constant size n for a string of n size. In

contrast, the data structure of the suffix tree has no constant size

and can acquire up to 2n nodes, with each node storing informa-

tion about its edges, parent and children nodes, thus increasing

the storage need. By choosing the suffix array we decrease the

storage need for the construction of the index. The second factor,

which allows for less storage and subsequently communication

efficiency is the dummy blocks policy which is used to hide the

structure of the suffix tree in [7]. Our dummy node policy to ob-

scure the encrypted suffix array relies only on the frequency of

the most frequent character. Namely, we fill up the original string

with characters such that the frequency of each character is the

same. However this approach raises a shortcoming when applied

to data sets with skewed frequency distributions such as text based

data sets. We overcome that limitation with a bucketization tech-

nique. Instead of building the index on a single character approach

we explore the idea of grouping together characters consisting a

bucket. Surprisingly our experimental evaluation showed that the

skewed frequencies are diminished and the final storage overhead

for the index is considerably smaller by a factor of 1.8 for text based
datasets.

In this paper we design and analyze a storage efficient Substring

Searchable Symmetric Encryption (S3E) protocol with variable size

of substrings. We follow a different approach from existing tech-

niques that allows us to achieve the efficiency, functional and secu-

rity goals we want. In our technique we exploit a self-indexed data

structure, which allows the cloud to search for substring queries. Its

form resembles the suffix arrays with some additional extra steps.

The main contributions in the paper are summarized as follows:

• Storage efficient Substring Searchable Symmetric Encryption
(S3E): Thanks to the employment of the suffix array, which

achieves a small hidden factor (≈ 4) in the O (n) asymptotic

complexity, compared to the bigger (≈ 20) hidden factor

of the suffix tree, our design presents a storage efficient

substring searchable symmetric encryption protocol.

• Variable substring query length: Our solution allows a dy-

namic issue of substring queries of variable size without the

need of defining a fixed query size beforehand.

• Provably secure. Our scheme is provably secure in the real-

ideal simulation paradigm with similar leakages as the state

of the art scheme in [7].

• Prototype implementation: We implemented our protocol and

the state of the art work in [7]. We performed a real world

comparison of both schemes based on computation time and

communication overhead to build the index and query for a

substring. Our results show a performance advantage of 1.8
storage overhead on text based datasets as the enron email

one.

Outline. In section 2 we introduce the problem this paper ad-

dresses. Afterwards, in section 3 we review similar cryptographic

protocols for substring searchable symmetric encryption. We con-

tinue in section 4 with preliminaries of our solution and the basic

building blocks. In section 5 we illustrate in more details the design

components of our protocol and in section 6 we describe in details

our protocol. We present a thorogh security analysis in Theorem 7.

In section 8 we present some benchmark results and in section 9 a

comparison with state of the art. Finally, we conclude in section 10.

2 PROBLEM STATEMENT
In this section we formalize the problem of string matching. We first

start with the functional requirements of substring matching and

afterwards we present the security requirements of the protocol.

2.1 Functional Requirements
Herewith pattern matching, string matching and substring match-

ing are used interchangeably in this paper. We assume that a string

S is modeled as a one dimension array S[1...n]. A substring is an-

other array T [1...m]. The elements of each array are drawn from

some finite alphanumerical alphabet Σ of size σ = |Σ|. We say that

a substring T occurs in S if there exists s : 1 ≤ s ≤ n −m and

S[s + 1...s +m] = T [1...m], meaning that S[s + j] = T [j], 1 ≤ j ≤ m.

Naive algorithms for pattern matching achieve O (n) on search

time and 0 cost on preprocessing. The algorithm simply scans all the

positions i, 1 ≤ i ≤ n−m of the string S until it findsm consecutive

matches at a position j, 1 ≤ j ≤ n −m + 1. Trading preprocess-

ing efficiency for better search costs, Robin Karp algorithm [21]

achieves O (n −m + 1) search time and Θ(m) preprocessing amor-

tized cost. In a similar trajectory Knuth-Moris-Pratt [22] has Θ(n)
search complexity and Θ(m) preprocessing time. Boyer-Moore pat-

tern matching technique [2] increases the preprocessing cost at

Θ(m + σ) in order to have worst case search complexity O (n). Fol-
lowing a different trajectory substring matching techniques achieve

O (m) search time by leveraging a more sophisticated preprocessing

step, in which the suffixes of all substring are computed along with

their positions in the string S , be it suffix tree[25, 34, 35] or suffix

array [24]. Suffix tree though has a more expensive space efficiency

due to the extra information the suffix tree has to keep [1, 3, 17, 24].

This cost is translated to a constant factor that approximates ≈ 20,

which is hidden in the O (n) asymptotic storage cost of the suffix

tree construction. As a first step to relax this storage extra hidden

cost we choose to build upon the suffix array string matching ap-

proach which has a much simpler storage cost which approximates

4n [1].

We redraw upon the queryable encryption syntactical definition

of [7], since we believe it follows a deceptive abstraction. Namely,

the functional definition claims to capture a generic framework

for searchable encryption, in the sense that a query F can be any

function keyword query, or substring query. However, an encrypted

searchable encryption scheme is a more generic protocol, since it

can be used to solve the substring searchable encryption problem

with the encrypted inverted index technique as shown in the intro-

duction. As such, searchable and substring encryption schemes can-

not be addressed by the same definitional framework. Furthermore,

the nature of the problem and the solution for substring queries

drastically varies from keyword searchable encryption, since the

index contains the data and there are not two separate objects,

meaning that the index for substring queries is self-indexed, since
from the index you can recover the underlying data structure. In

contrast in encrypted searchable encryption, there is a clear distinc-

tion between the index, and the data structure that holds the data

(files with keywords). For these reasons we rewrite the functional

definitional framework for substring searchable encryption.

Definition 2.1. A Substring Searchable Symmetric Encryption

scheme (S3E) is a collection of four polynomial time algorithms

(KeyGen,PreProcess, SrchToken, Search) defined as follows:

• k ← KeyGen(1λ): It is a probabilistic algorithm that takes

as input the security parameter in the unary form 1
λ
and

outputs the secret substring search key k.
• SES← PreProcess(k, S): This algorithm takes as inputs the

stream S and the secret key k and outputs the substring

encrypted data structure SES.
• tkT ,S ← SrchToken(k,T [1...m]): It is a probabilistic algo-

rithm that takes as input the secret substring search key k,
a string T [1...m] and outputs a trapdoor to search for the

string T on data stream S , through SES.
• (s,⊥)← Search(tkT ,S , SES): It is a deterministic algorithm

which takes as input a trapdoor tkT ,S and a substring en-

crypted structure SES and outputs the positions s in S that

substring T occurs, or ⊥ otherwise.

A substring searchable encryption scheme is correct if ∀λ ∈

N,∀S ∈ Σ,∀k← KeyGen(1λ),∀SES← PreProcess(k, S),∀tkT ,S ←
SrchToken(k,T [1...m]), Search(tkT ,S , SES) always returns the cor-
rect positions s in the string S or ⊥ otherwise.

2.2 Security Model
Intuitively the security guarantee we ask for is 1) given a prob-

abilistic polynomial time adversary A with access to a sub-

string encrypted structure SES, A cannot gain more partial in-

formation about the underlying stream of data S and 2) given
a set of trapdoor tokens for an adaptively generated set of

queries q = (q1,q2,q3, . . . ,qo) associated with set of tokens

t = (tk1, tk2, tk3, . . . , tko) A cannot learn anything for q and t.
Following the symmetric searchable encryption paradigm we know

it is impossible to achieve those two security guarantees without

leaking some extra information as the observed in [5, 6, 8].

We express the security guarantees of the protocol in terms of

simutability [23]. First a leakage function L is defined, which ex-

presses the leakage of a S3E scheme to an adversary A, through

the transcripts of the protocol. The simulation framework assumes

two worlds. The RealS
3E
A (λ) world, whereby adversaries can corrupt

the parties they want and the IdealS
3E
A,S (λ) one in which there is

only benign behavior of each party. The security analysis narrows

down to the design of a simulator S, who tries to simulate the ma-

licious behavior in the IdealS
3E
A,S (λ) world, only through access to

the leakage function L. We say that a protocol is secure if S simu-

lates indistinguishable views of the adversaryA in the IdealS
3E
A,S (λ)

world.

The adversaryA plays the role of a semi-honest cloud and during

the two world we assume a challenger C who interacts withA. We

describe the two world in algorithmic details in what is follows:

RealS
3E
A (λ) world:

• C runs KeyGen(1λ) to obtain k.
• A chooses a string S ∈ Σ, sends it to C and C replies with

SES← PreProcess(k, S) to A.

• A issues a polynomial number of adaptively chosen queries

q = (q1,q2,q3, . . . ,qo) and receives from C a set of tokens

t = (tk1, tk2, tk3, . . . , tko).
• Finally A outputs v = (SES, t).

IdealS
3E
A,S (λ) world:

• A outputs a string stream S .
• The simulator S through the leakage L generates SES and
forwards it to A.

• A issues a polynomial number of queries q =

(q1,q2,q3, . . . ,qo). S replies to each of the queries through

the leakage function L with t = (tk1, tk2, tk3, . . . , tko).
• Finally A outputs v = (SES, t).

Definition 2.2. A substring searchable encryption scheme scheme

is adaptively L-semantically secure against a probabilistic polyno-

mial time adversary A if there is exists a polynomial Simulator S

such that for all polynomial time distinguishers D:

| Pr[D (v) = 1 : v ← RealS
3E
A (λ)]−

Pr[D (v) = 1 : v ← IdealS
3E
A,S (λ)]| ≤ neg(λ)

3 RELATEDWORK
Computing on encrypted data goes beyond linear and affine trans-

formations on numerical data held by an untrusted cloud. It is very

common for a single or multiple users to search on encrypted data

remotely. Under the scenario of remotely searching, new security

guarantees beyond confidentiality and integrity need to be con-

sidered. The so called search pattern reveals similarities between

search queries, and the access pattern leaks the identifiers or mem-

ory addresses of the accessed files–even encrypted [8].

The ORAM paradigm [16] enables a user to remotely search for

encrypted data, without leaking the search or the access pattern.

The trade off comes with a bandwidth and communication burden.

In [16] the bandwidth overhead is polylogarithmic, which has been

reduced down to logarithmic in subsequent work [10, 27, 31–33].

However, in order to provide a real practical real world remote

search protocol on encrypted data some leakages are allowed: the

search and access pattern. The formalization of these patterns has

been presented in the literature under the Symmetric Searchable
Encryption (SSE) framework [4–6, 8, 29], with efficient instantia-

tions.

With SSE a user encrypts data and index separately. It uploads

both to an untrusted cloud and later on can search efficiently file

identifiers with specific single keywords or an expressive boolean

function over keywords, without the cloud learning anything about

the files or the keywords. This comes at a security cost of leaking

the search and access pattern. Following the approach of SSE, we

can design substring searchable symmetric schemes as follows. The

user builds an index which maps substrings to positions, encrypts

the index and uploads it the the cloud. Later on, the user computes

a token for the specific substring and the cloud tries to find a match

in the index. If a match occurs the cloud returns the encrypted

positions for this token, which correspond to a substring. However,

this approach has increased storage cost O (n2), since the cloud has

to keep track of all the possible substrings.

Tailored substring searchable encryptions schemes have been

proposed in the literature [7], [12], [11]. Chase etal. [7] leverage
the auxiliary data structure of the suffix tree. A suffix tree is a

compressed suffix trie, can be computed in timeO (n) and allows for
substring search in O(m) time on a substring of sizem. Its amortized

storage cost O (n) hides a big constant factor, which could be equal

to 20 [1, 3, 17, 24]. In [11] the authors extended the efficient SSE

scheme for boolean queries from [4] in order to support substring

matching. The idea is to build an index of overlapping k-grams, to

prepend its relevant position and encrypt it. When a user needs

to perform a substring query, the cloud performs a conjunctive

keyword search for all the k-grams of the substring and returns

the position. The disadvantage of the scheme comes at the need

of storing all the overlapping k-grams at the cloud, which will

represent substrings.

In [12] the authors follow a different approach. Instead of taking

the index-then-encrypt approach with fast symmetric cryptographic

primitives, they modify the subset sum problem, which is used to

build public key encryption schemes, in a means such that the

cloud can solve it. This technique hides also the search pattern but

comes at the cost of fixed size substrings, that must be defined in

the beginning of the protocol. Moreover the substring should be

substantially small with respect to the big stream. Our solution in

contrast allows variable size of substring of any size.

Recently, Blass and Moataz [26] strengthen the security require-

ments by hiding the search and access patterns, following the

ORAM approach. By leveraging the Path ORAM technique and

the suffix array construction for substring queries, the authors man-

age to reduce the bandwidth, with a binary recursive tree above

the position map. Each node in the tree represents a Path ORAM of

the binary search tree for the suffix array. However, in order the

cloud to be able to perform an oblivious binary search has to keep

track of all the suffixes, which blows up the storage cost for the

server. Furthermore the need for storing the suffixes cancels out

the suffix array storage advantage over suffix tree. Finally, due to

the Path ORAM technique the user has to store a state logarithmic

on the length of the string–for the position map. The extra security

guarantees of the tailored ORAM scheme do not allow for efficient

storage cost both at the client and the cloud side, which is the goal

for our work. Sanders etal. [30] presented a public key substring

searchable encryption, where the underlying substring algorithm

is a variant of Rabin-Karp algorithm, thus suffering from linear

substring search time. It is noteworthy though to mention that

their goal is to decouple keyword generation from the encryption

of data in order to allow searches even when the underlying text is

not known when the index is built.

Papadopoulos etal. [28] addressed the problem of authenticating

substring queries without privacy and various work for pattern

matching adopts the two party computation model [9, 14, 18, 19] in

which one party holds the data stream and a client the pattern. The

model differs from the substring searchable symmetric encryption,

since in the latter one client holds both the pattern and the stream

and uploads an index of the stream to an untrusted party.

4 PRELIMINARIES
In order to reduce the storage cost for our Substring Searchable

Symmetric encryption scheme (S3E) we first substitute the storage
expensive suffix tree of the state of art work in [7] with a suffix array

SA. A suffix array for a string S of size n constitutes of an integer

array of size n, which has at each position a pointer to the start of

the matched suffix T [1...m] in the string S . SA is lexicographically
sorted with respect to all the possible suffixes and can be computed

in linear time on the size of the string S . In order to look for the

position of a substring, a binary search in SA is performed, which is

used as an index to the original string. Thus, the running time for

a substring search is O (m + loдn). Let us now consider a concrete

example to uncover its details. Suppose S=lalakis. The algorithm
for the suffix array proceeds as follows:

(1) Compute all the suffixes starting from the right-most posi-

tion: s, is, kis, akis, lakis, alakis, lalakis.

(2) Lexicographically sort the suffixes: akis, alakis, is, kis, lakis,

lalakis, s.

(3) Find the position in S of each suffix from step 2 and store

them in an array SA = [4, 2, 6, 5, 3, 1]

(4) Output SA.

However, plugging the SA for a substring searchable symmetric

encryption scheme raises some difficulties. We assume that the

suffix array is encrypted under a secret key of the user. In order

to retrieve the correct encrypted index position from SA, the cloud

should run a binary search obliviously without learning the under-

lying string S , query substring T , or any of the suffixes. A solution

to the problem is to use the technique presented by Gentry etal.
[15], which allows for a single ORAM query in order to perform a

binary search over encrypted data. However, in order to adapt this

approach it is required from the server apart from the encrypted

suffix array, to store the tree of the encrypted data, which would

be an extra burden for its storage complexity.

We take advantage of the self-indexed data structure Ferragina-

Manzini index, called hereafter FM index [13]. Namely, from FM

index the untrusted cloud can answer substring queries by lever-

aging the suffix array SA, without the need for an ORAM query.

The neat property of the FM index is that it can reconstruct the

original string S with some extra auxiliary data structures, thanks

to its instantiation from the Burrows-Wheeler Transformation algo-

rithm (BWT) [3]. For the reconstruction it employs the LF mapping

technique, thus there is no need to store the encrypted stream S .
The FM index can be derived from SA, as such its computational

overhead is almost for free, after the computation of the suffix array.

We describe the core building blocks of the FM index in what it

follows.

4.1 Pattern matching
In this section we describe the compressed index FM, that will be

used for the construction of our Secure Pattern Matching (S3E)
protocol. The design lies heavily on the BWT transformation for

compression of bit-strings and on a special LF mapping for the

reconstruction of the original string from BWT. The BWT, along
with the LFmapping technique and some auxiliary information are

the basic blocks of the compressed index for substring queries.

4.1.1 BWT Transformation. The Burrows-Wheeler Transforma-

tion (BWT) transforms a stream of data by leveraging the entropy

of each character. In a nutshell, the data stream S is transformed

to an encodingW such that compression algorithms provide high

rate of compression. For ease of completeness we show the steps

to transform an original stream S toW with BWT in algorithm 1.

First, the algorithm appends the terminating symbol $ to the input

string S . Then, it builds the matrixW by permuting the symbol $.

At each iteration the permutation is appended as a new row to the

matrix W. Finally the rows ofW are sorted lexicographically in an

ascending way.

4.1.2 LF Mapping. The LF Mapping technique takes the first

F and last L columns from the BWT transformation and through

an iterative process (algorithm 2) reconstructs the original string S .
Starting from the first elements of each column from F and L, the
algorithm employees L as an index to the F column. Each time the

element of the L column is appended to a LIFO stack. The value

at the current position will be used as an index for the F column

for the next loop. An example is presented in figure 1. At the first

iteration the pointer indicates the first position in both columns

F, L. For the next iteration the L character ’s’ indicates the index

for the first column F, which can be found at its last position with

F[7] =s. The current character at the L column is appended to a

stack D. For the next iteration the current character at the L column

indicates the next index for the F column. The character i is pushed

Algorithm 1: BWT transformation

Input: String S
Output: BWT(S) =W
l=length(S)+1;

S.append($);

i=0;

while i<l do
ri=rotate(s,$) // The rotate algorithm permutes the
characters of the original string and returns the permuted
string;

W.addrow(ri) // It adds the permuted row from the previous
step to the matrix W ;

i + +;

end
return Sorted.W;

to the stack D. The procedure halts when the position at L is $.

Then the algorithm pops all elements from D and the initial string

S is fetched.

Algorithm 2: LFMapping

Input: First (F), Last column (L) from BWT
Output: S
D=0 // Initialize the stack D;

l=length.(F) // the length of F equals the length of L;

i=0;

while L[i]! = $ do
D.push(L[i]);
i=find.F[L[i]]// find.[] denotes the index number in array

[] that the element is. For instance find.F[’s’]=7 ;

while D! = \′0′ do
S=S+D.pop;

return S;

F L F L F L F L F L F L F L F L
$ s $ s $ s $ s $ s $ s $ s $ s
a l a l a l a l a l a l a l a l
a l a l a l a l a l a l a l a l
i k i k i k i k i k i k i k i k
k a k a k a k a k a k a k a k a
l a l a l a l a l a l a l a l a
l $ l $ l $ l $ l $ l $ l $ l $

s i s i s i s i s i s i s i s i

Figure 1: The LFmapping process is used to reconstruct the original
string S from the transformed one after applying the BWT opera-
tion. Starting with the $ sign from the F column, the mapping pro-
gressively reconstructs the entire string S. The last column L is used
as a “ladder step” to find the next ith index in the F column, which
in turn maps to the ith entry in the L column. The entire procedure
halts when L[i]==$

4.1.3 FM Index. Suffix array vanilla construction hasO (n2loдn)
asymptotic computational cost. This stems from the fact that the n
suffixes are first sorted by performing O (nloдn) comparisons and

each comparison has cost n. Linear time algorithms have been

designed by first constructing a suffix tree and then traversing it

with a depth first edge in lexicographical order. However, our goal

is to be storage efficient, meaning we want to eliminate the storage

cost of a suffix tree, which practically approximates a constant

factor of 20n [1, 3, 17, 24]. We pick up the skew algorithm [20] which

is a divide and conquer based algorithm and achieves linear time

construction. The approach of the skew algorithm is to recursively

divide the suffixes in three groups depending on the position pos
of all suffices: pos mod h,h ∈ {1, 2, 3} and then merge the result.

The FM consists of three column arrays. The first one is the F
column from the LF mapping, the second one is the L column,

which corresponds to the BWT(S) and the last one corresponds

to the suffix array SA. SA contains at each row i , the position

in the original string S of the substring which corresponds to

the ith row of the W matrix obtained after applying the BWT
transformation. L = BWT(S) can be computed with the formula

BWT(S)[i] = S[SA[i] − 1] from the suffix array. Furthermore for

the traversal of the LF mapping the unique ranking of each char-

acter in each F, L needs to be stored in rF, rL accordingly. Finally
FM = {F[i], L[i], rF[i], rL[i], SA[i]}

n
i=1.

The entire challenge is on how a user encrypts FM in such a

way that an untrusted cloud can correctly reply with the encrypted

position on substring queries. We give the cryptographic tools

that we use in our protocol in the next subsection. We give an

intuition of our approach in the next section, we also highlight

some shortcoming thereof and we demonstrate our solution to

alleviate it.

4.2 Cryptographic Primitives
4.2.1 Pseudorandom functions (PRF). Let the family of all func-

tions in the universe from a domainX to a rangeY to be Func[X ,Y].

A truly random function f
$

← Func[X ,Y] is chosen randomly from

the set of Func . The set of all these functions is |Y | |X | (gigantic
number). It is true that for any random function f with range size

L chosen randomly from Func[X ,Y], Pr[f (x) = y] = 2
−L

. The

randomness is not parametrized neither by the size of X and Y
nor by the size of the domain. We define a pseudorandom function

fk : X → Y as a function from the set of all functions from X to Y
as soon as a particular key k is fixed.

Definition 4.1. Let Func={F : X → Y } be a function family for

all functions F that map elements from the domain X to the range

R. Then a PRF = { fk : X ′ → Y ′} ⊆ Func for k
$

← K , where K is the

key space.

The security of a PRF is modeled with a game which is known

as real or random security game[?]. Intuitively, an adversary A is

given access to an oracle that on input x from a domain X , flips

a coin b
$

← {0, 1} and if b = 0 then it outputs y = f (x), for f ∈
Func[X ,Y], otherwise it outputs y = fk (x).A issues queries to the

oracle polynomially many times on input of the security parameter

λ. Finally A outputs a guess b ′ for the bit b.

The advantage of a probabilistic polynomial time algorithm A

in the PRF game is

AdvPRF
A
= Pr[b

$

← {0, 1};b ′ ← A (y) : b ′ = b]

Definition 4.2. A PRF is computationally secure if all probabilistic

polynomially time algorithms A have advantage in the PRF game:

1

2
+ ϵ (λ), for a negligible function ϵ on the security parameter λ.

4.2.2 Pseudorandom permutations (PRP). A permutation is a

bijective function where the domain and the range are equal. Sim-

ilarly with the random functions, let Perm[X] to be the set of all

permutations for the domain X. Then a pseudorandom permutation

(PRP) is a randomly chosen permutation from the set Perm[X],
keyed under a secret key k .

The advantage of a probabilistic polynomial time algorithm A

in the PRP game is

AdvPRP
A
= Pr[b

$

← {0, 1};b ′ ← A (y) : b ′ = b]

Definition 4.3. APRP is computationally secure if all probabilistic

polynomially time algorithms A have advantage in the PRP game:

1

2
+ ϵ (λ), for a negligible function ϵ on the security parameter λ.

4.2.3 Symmetric Key Encryption. A symmetric key encryption

scheme SKE = {Gen, Enc,Dec} consists of three algorithms. Gen
takes as input a security parameter λ and outputs the secret key sk.
The probabilistic encryption algorithm E takes as input the secret

key sk and a plaintext x form the plaintext space P and outputs

the ciphertext c . The decryption algorithm SKE.Dec takes as input

a ciphertect form the ciphertext space C and the secret decryp-

tion key sk and outputs the plaintext x ∈ P. Correctness follows

⇐⇒ ∀sk ← Gen(1λ), SKE.Dec((E(sk,x))) = x ,∀x ∈ P. Secu-
rity is modeled with the standard game based indistinguishability

experiment for polynomial probabilistic time adversary A.

PrivKA,SKE (λ):

• A has access to the security parameter 1
λ
.

• A key sk← Gen(1λ) is generated and A can learn encryp-

tions of x of its choice x ∈ S ⊂ P.

• Eventually A outputs x0,x1 where |x0 | = |x1 |. b
$

← and

E(xb , sk) is returned to A.

• A outputs its guess for b, b ′.

If b ′ = b A succeeds and the experiment PrivKA,SKE (λ) = 1.

Definition 4.4. A symmetric encryption scheme SEK has indis-

tinguishable encryptions if the probabilities Pr[PrivKA,SKE (λ) =

1] ≤ 1

2
+ neg(λ).

5 INTUITION
In this section we provide some intuition about S3E protocol before

delving into its precise description in the follow up section. First

we start with showing how the client encrypts the index to allow

the cloud process fast encrypted substring queries. Our solution

is based on the FM index described in the previous section. The FM
index consists of three arrays, which keep track of the F, L columns

and the encrypted SA suffix array with positions of substrings and

not all the suffixes as in [26]. To recap, the user computes the suffix-

array SA and the F, L columns through the BWT transformation.

LLSet LL

Fkf (c
1)⊕ Fkl(c

1)

l1c1 = 〈nptr, addr〉

Fkf (c
2)⊕ Fkl(c

2)

Fkf (c
3)⊕ Fkl(c

3)

b

b

b

Fkf (c
w)⊕ Fkl(c

w)

l1c1 ⊕ Fkl(c
1)

l1c2 ⊕ Fkl(c
2)

l1c3 ⊕ Fkl(c
3)

l1cw ⊕ Fkl(c
w)

l2c2

l2c3

l2cw l3cw l4cw

l3c2

FM

Fkf (cFj)⊕ Fkf (rFj ||cFj)

Fkf (cLj)⊕ Fkf (rFj ||cFj)||Fkf (rLj ||cLj)||Enc(ke, SA[i])

FM.SA=SKE.Enckπ(pos.c)

SALF

l3c3

Linked Lists

Figure 2: The encrypted FM index construction.

σ Vocabulary size

Σ Vocabulary

S Original stream

T Substring query

c character

b bucket

n Size of S

m Size of T

win window size

SA Suffix array

F First Column of LF mapping

L Last Column of LF mapping

LLSet Hash map

LL Linked List

cFj , bFj jth character,bucket from F column

cLj , bLj jth character,bucket from L column

rci , rbi Ranking of ith character,bucket in the string S
rFj Ranking of jth character from F column

rLj Ranking ofjth character from L column

cw w th
character, bucket from the alphabet, (1 ≤ w ≤ σ)

bz zth bucket,(1 ≤ z ≤ n − win + 1)
λ Security parameter

F(·) Pseudorandom function (PRF)

Π(·) Psudorandom permutation (PRP)

SKE = {Gen, Enc, Dec} Symmetric encryption

kf PRF key

kl PRF key

kπ1,2,3 PRP keys

Table 1: Notations

5.1 First Approach
We give an overview of our first approach. The protocol can be

described in two phases: The encrypted index phase and the search

phase.

5.1.1 Encrypted Index. To facilitate the reader we split the en-
crypted index process in two steps (cf. figure 2) the linked list, which

bootstraps the search procedure on the FM index by the cloud and

2) FM index itself. The notation used for the protocol is given in

table 1. For the security of the scheme the user employs lightweight

cryptographic primitives: a pseudorandom function F(·), a pseudo-
random permutation Π(·) respectively and a symmetric encryption

scheme SKE = {Gen, Enc,Dec}. The untrusted cloud, thanks to the

LF mapping and the FM index computation does not need to store

all the suffixes of a stream S (cf. figure 2).

Linked List The crux of the design is on how to allow fast indexing

through a hash table, which means that there should be unique keys

derived from the string with repetitive characters. We employ the

ranking information rc of each character along with the character

itself. However, when a user is looking for a substring, it does

not know the ranking of each character in the substring T [1...m].

We mitigate this deficiency by building a linked list LLc for each
character.

The user computes a hash table of linked lists LLSet, where
each position LLSet[Fkf

(cw)], 1 ≤ w ≤ σ maps to the linked list

LLcw . The number of linked lists equals the number of distinct

elements c , denoted as σ in the data stream S , where each symbol

cw , 1 ≤ w ≤ σ comes from an alphabet Σ. The hash table is used to

fetch all the positions of a character in the stream S from the linked

lists LLcw . Each linked list LLcw stores information concerning the

retrieval of the position of c from S . More specifically each node in

the list stores the following tuple: ⟨nptr, addr⟩, nptr is a pointer
to the next node of the current list and addr is the address of the
element c in the FM index.

The first node of each linked list is stored in the LLSet hash

table. In order to prevent the adversary who tries to correlate ele-

ments from the LLSet with positions in the FM index, we further

encrypt each key Fkf
(cw) in the LLSet hash map with another key

kl as follows: Fkf
(cw) ⊕ Fkl

(cw). Thus the cloud cannot correlate

associations from LLSet to FM attack offline without observing any

token. The key of the hash map LLSet at Fkf
(cw) ⊕ Fkl

(cw) maps

to the first element of the linked list LLc , which is encrypted as

⟨nptr, addr⟩ ⊕ Fkl
(cw)1. As such, the frequency of each character

before a search query is hidden.

However, once the cloud receives queries, it can learn the fre-

quency of encrypted characters in the linked list which represent

characters of the string. In order to obfuscate frequency analysis on

the encrypted index from substring search queries, we pad the data

stream with dummy blocks. These dummy blocks make all linked

1
Notice that even if we use a one time pad with the same key for two different elements:

a = ⟨nptr, addr⟩, b = Fkf
(cw) an adversary by xoring the two ciphertexts encrypted

under the same key Fkl
(cw), learns ab = ⟨nptr, addr⟩ ⊕ Fkf

(cw), which is a one

time pad encryption of ⟨nptr, addr⟩ with key Fkf
(cw).

lists to appear with the same size. The core idea for padding is to

produce dummy blocks from the vocabulary Σ depending on the

ranking of the most frequent character. E.g: Original stream=abbcd

and Σ=abcd, then the dummy blocks equal dc={ a, c, d}. Finally

the user chooses uniformly at random dpos
$

← {|dc |} and appends

the original string S at position dpos of dc. Following the previous

example; if dpos=1 then S ′=aacdbbcd. The cloud responds in the

final round with the encrypted position pos . User accepts the result
as correct if dpos ≤ pos ≤ n − dpos and pos +m < dpos + n.
FM Index Encryption (figure 2). The second difficulty comes

when the cloud tries to traverse the FM index through the LF
mapping technique. The encrypted FM index contains unique di-

gests of characters, while the cloud should identify matches from

the token tkT ,S , that encodes repetitive characters deterministi-

cally. In order to allow the cloud traverse the encrypted FM in-

dex, we encrypt the FM as a key value hash table where the key

consists of Fkf
(cFj) ⊕ Fkf

(rFj | |cFj) and the value is Fkf
(cLj) ⊕

Fkf
(rFj | |cFj) | |Fkf

(rLc j | |cLj), E(posj). Finally the user permutes all

the tuples with a secure permutation: Πkπ (tj).

5.1.2 Search. During the Search phase on

a substring query tkT ,S = Fkf
(T [1...m]) =

Fkf
(T [1]), Fkf

(T [2]), . . . Fkf
(T [m]), Fkl

(T [m]) the cloud proceeds

as follows:

Bootstrap. First it needs to bootstrap the search by finding the

correct candidate positions in the encrypted FM table through the

linked list, which correspond to all positions in the string S where

the last character of the query possibly exists. From the LLSet hash
table it looks for the value with key Fkf

(T [m]) ⊕ Fkl
(T [m]). This

value maps to a linked list LLc , in which each node maps to the

encrypted FM tuple tj = t0j , t
1

j , t
2

j =

⟨Fkf
(cFj) ⊕ Fkf

(rFj | |cFj)︸ ︷︷ ︸
F

,

Fkf
(cLj) ⊕ Fkf

(rFj | |cFj) | |Fkf
(rLc j | |cLj)︸ ︷︷ ︸

L

, E(posj)︸ ︷︷ ︸
SA

⟩nj=1.

In order to decrypt the first element of the linked list the cloud uses

Fkl
(T [m]) as a key to decrypt ⟨nptr, addr⟩ ⊕ Fkl

(cw) and learns

⟨nptr, addr⟩ . The cloud uses Fkf
(T [m]) and applies a xor operation

on the F column at the ranges that it retrieved from the linked list

of the cm character LLc and learns Fkf
(rFj | |cFj).

Iteration. The cloud uses Fkf
(rFj | |cFj) as a key to decrypt the first

part of the L column element Fkf
(cLj) ⊕ Fkf

(rFj | |cFj) and reveals

Fkf
(cLj). It then fetches the encrypted L column as k = Fkf

(cLj),b =
Fkf

(rLj | |cLj) in which Fkf
(cLj) = Fkf

(T [m − 1]) and for all nodes

from the linked list computes k ⊕ b, which is used as a key for the

F column. The procedure terminates when the processed substring

character is the first one Fkf
(T [1]).

At this point the cloud returns to the user all the encrypted

E(posj) for the substrings. The user decrypts and accepts the result
as long as the decrypted position is in the range of the size of

original stream without padding.

Second round. From the per-character one way function Fkf
eval-

uation of the substring query: tkT ,S = C[1],C[2], · · · ,C[m] ←

Fkf
(T [1...m]) and the LF mapping the protocol leaks to the cloud

in cleartext the exact differences of the positions of two en-

crypted substring in the stream S as long there are unique matches.

More specifically, the number of iterations in the LF mapping

traversal (algorithm 2), reveals how many positions two sub-

strings they differ, as long as there is unique match in S . Even-
tually, an untrusted cloud can decrypt the entire encrypted SA
array, which contains encrypted positions of all substrings in

S , since it knows its addresses. To circumvent the leakage we

first use two different permutations to permute the tuples tj :

Πkπ1
(t0j , t

1

j) = π 0,1
j ,Πkπ2

(t2j) = π 2

j . As such, after the permuta-

tion Fkf
(cFj) ⊕ Fkf

(rFj | |cFj)︸ ︷︷ ︸
F

, Fkf
(cLj) ⊕ Fkf

(rFj | |cFj) | |Fkf
(rLc j | |cLj)︸ ︷︷ ︸

L

are stored in position π 0,1
j at the FM array and E(posj)︸ ︷︷ ︸

SA

at posi-

tion π 2

j . The cloud as traverses the token returns the permuted

encrypted position of the substring token, the client applies the in-

verse permutation and fetches the correct cell from the FM array. By
doing so the cloud cannot learn on its own, the encrypted position

of a substring. The second permutation prevents him to learn this

information by stopping the traversal of the index at any substring

of the original query at its choice. To perform that, it needs the

contribution of the user. In part, the second permutation can be

viewed as the induced permutations of structured encryption [6],

which encrypt positions of items belonging a data structure, but

in contrast with structured encryption a user in substring queries is

interested to identify positions of sub-elements (substrings) of the

original data sructure and not the entire elements (e.g: positions of

elements in a matrix).

5.2 Improved scheme
5.2.1 Shortcoming. Recall that during the encryption of the

index, the user adds dummy blocks at the linked lists in order to

alleviate frequency attacks. Namely after issuing a query token

tkT ,S the client reveals to the cloud the key Fkl
(T [m]) in order to

locate the head of the list which corresponds to the key Fkf
(T [m])⊕

Fkl
(T [m]). The cardinality of the list corresponds to the frequency

of that character in the original string S . In our first approach we

address this problem by adding dummy blocks in all linked lists in

order their size to equal the size of the longest one.

The aforementioned technique protects the client from frequency

attacks on the original string and imposes low overhead in case of

a string drawn from a distribution with homogeneous frequency

characters. However in a more skewed dataset with characters

having broad frequencies, then the technique of dummy characters

can drastically affect the efficiency of the system. More specifically

the dummy characters may double the size of the final size of the

index, thus degrading the storage overhead and the computational

efficiency of the client.

5.2.2 Bucketization of characters. Index. The entire procedure
is similar to the first approach but instead of operating on single

characters everything operates on buckets. Now the F and L column

arrays correspond to buckets and the input to the Fkf
is not a single

character c but a bucket b. We use the same notation conventions

with the first approach but instead of operating on characters we

operate on buckets, i.e: we denote by b1 the first bucket of string,

bFj is the j
th

bucket of the F column, etc. The LLSet hashmap stores

for each key Fkf
(bz)⊕Fkl

(bz), the head of lists, which correspond to
buckets of the stream. The entire procedure to encrypt the index is

identical with our basic approach and we omit a repetitive overview

thereof.

Search. During the search phase if the size of the token, which

consists of possible consecutive buckets of the original string S ,
is a multiple of the windows size win then the protocol protocol

proceeds identically as with the per-character previous version of

the search procedure.

However when the size of the token is not multiple length of win
then there will be always a faulty mismatch. The possible match

of the last bucket of the token will be inside the last non-matched

bucket from the index. Recall that from the LF traversal on the FM
index, the search starts from the last character-bucket and proceeds

up to the first character-bucket of the search token. As such the

cloud during the search phase it will always misfire a mismatch. We

alleviate the correctness problem as follows. The cloud starts the

search not from the last bucket of the token Fkf
(T [m]) but for the

previous one Fkf
(T [m − 1]). If there is a match for allm − 1 blocks

of the token then the client needs to decrypt the mth bucket in

the string to verify matching of the first e = n mod win remaining

characters which correspond to the last bucket of the query token.

To do so the client has to encrypt and upload the stream S similarly

with [7] in a per bucket fashion resulting to an array of encrypted

buckets B. To avoid the leakage of the position the client permutes

the buckets with a pseudorandom permutation Π, keyed by kπ3 :

B′[j] = B[Πkπ3
(j)] and instead of querying for themth bucket it

forwards a request for bucket number B[Πkπ3
(m)]. It then decrypts

the bucket and compares it with the last bucket from the query to

identify a matching happening at positionm.

6 PROTOCOL
We give the full details of our substring searchable symmetric en-

cryption protocol, which alleviates the storage overhead shortcom-

ing of the first approach with our bucketization technique:

• k← KeyGen(1λ): This algorithm runs by the user takes as

input the security parameter 1
λ
and generates random keys

k = (kf , kl, kπ1,2,3 , ke,c) for a PRF Fkf
: {0, 1}λ × {0, 1}ν →

{0, 1}µ , a PRP Πkπ : {0, 1}λ × {0, 1}ν → {0, 1}ν and a sym-

metric encryption algorithm SKE = {Gen, Enc,Dec}. Finally
it outputs k to the user. For the generation of the keys we

assume a source of randomness R and a pseudorandom gen-

erator G seeded with

sf
$

←R, sl
$

←R, sπ1,2,3

$

←R, se
$

←R :

(kf , kl, kπ1,2,3 , ke,c) ← G(sf),G(sl),G(sπ1),G(sπ2),G(se)

• SES← PreProcess(k, S): User owns a stream S , which con-

tains characters c ∈ Σ. S has n characters. Let maxb be the

cardinality of most frequent bucket and fbi the frequency of

bucket bi . User:
(1) Parses the string S as buckets: {bz }n−win+1

z=1 , each of size

win characters and k in total distinct buckets:

for z = 1; z + +; z = n − win
bz = (z + win ≤ |S |)?S[z...z + win] : S[z...n − z]

(2) Chooses dummy buckets dc =
∑k
j=1 maxb − fbi that con-

stitute a dummy stream. The user chooses uniformly at

random dpos
$

← {|dc |} and appends the original string S
at position dpos of dc

(3) Computes the suffix array SA and the F, L columns on

input the buckets B and stores them as the FM index: FM =
F| |L, SA.

(4) Encrypts all buckest B = SKE.E(kc, bz), 1 ≤ z ≤ n + k −
win + 1

(5) Permutes B′[j] = B[Πkπ3
(j)]

(6) Encrypts elements of SA array with SKE.E(ke, SA[i]), 1 ≤
i ≤ +k − win + 1.

(7) Applies the PRF to each element of F as follows:

F[i] = Fkf
(bFi) ⊕ Fkf

(rFi | |bFi)

(8) Computes

L[i] = Fkf
(bLi) ⊕ Fkf

(rFi | |bFi) | |Fkf
(rLi | |bLi)

(9) Applies a pseudorandom permutation Πkπ to the tuples:

t0 = Fkf
(bFi) ⊕ Fkf

(rFi | |bFi),

t1 = Fkf
(bLi) ⊕ Fkf

(rFi | |bFi) | |Fkf
(rLi | |bLi)

using kπ1 and with kπ2 user permutes E(ke, SA[i]), for

i = 1, ...,n + k − win + 1 : Πkπ1
(t0i , t

1

i) = π 0,1
i ,Πkπ2

(t2i) =

π 2

i = FM′.
(10) For every distinct bucket in F[i] = Fkf

(bFi) ⊕ Fkf
(rFi | |bFi)

the user initiates a linked list LLc and at each node stores

LLc .nptr for the next node of the list and LLc .addr which
points to the tuple ti with a matching Fkf

(bFi). Finally
it encrypts the first element of each linked list LLc with
Fkl

(bi) : ⟨nptr, addr⟩ ⊕ Fkl
(bi).

(11) Stores the head pointers of the collections of all linked

lists in a hash table LLSet with key k = Fkf
(bi) ⊕ Fkl

(bi)
and value v a pointer to the head of the list LLc , which
stores information about the Fkf

(bi) character, meaning

all its positions to the encrypted FM index.
(12) Finally outputs SES = (LLSet, LLc , FM

′,B′) and keeps only
the keys k = (kf , kl, kπ1,2,3 , ke,c).

• tkT ,S ← SrchToken(k,T [1...m]): This algorithm takes as

input the secret substring search key k, a stringT [1...m] and

outputs a trapdoor to search for the string T on data stream

S , through SES:
(1) Parse T [1...m] to buckets Tb = {T

i
b }

m−win
i=1 of size win:

for i = 1; i + +; i =m − win
T ib = (i + win ≤ |S |)?T [i ...i + win] : T [i ...m − i]

(2) User with his secret PRF key kf computes

tkT ,S = C[1],C[2], · · · ,C[m − win] ← Fkf
(Tb =

{T ib }
m−win−1
i=1), Fkl (T

m−win
b) and forwards tkT ,S to the

cloud.

• (s,⊥)← Search(tkT ,S , SES): The cloud parses the token

query tkT ,S = C[1],C[2], · · · ,C[m − win] and searches the

position in S from the encrypted index SES as follows:
(1) if |tkT ,S | mod win == 0

x =m − win, flag = 0
else

x = m − win − 1, flag = 1 // Search for the last equal

size bucket pattern before the last one.

(2) u = f ind (LLSet,C[x])//find in dictionary LLSet the value

u with key C[x].u is a pointer to the head of a list LL,

which stores pointers to all buckets T [m] in S

(3) if u ==⊥ return ⊥
(4) while u ,⊥ do

K = K ∪ u .addr //traverse the list and store in the set

K the addresses of the characters.

u = u .nptr
(5) for p = x − 1;p > 1;p = p − 2

for i = 1; i < size (K); i + +
if SES.L[K[i]) (1) == C[p−1]//Store in the set KEYS

only the elements from the F column, whose associated L

element equals the next bucket from C in a backword order.

SES.L[K [i]](1) maps to Fkf
(bLi) ⊕ Fkf

(rFi | |bFi) and SES.L[K [i]](2)

to Fkf
(rLi).

KEYS = KEYS ∪ SES.L[K[i]]
else K = K − K[i] //Remove all the non matched

elements from the key set K.

if K ==⊥ return ⊥
for i = 1; i < size (KEYS); i + +
rFi = C[p] ⊕ KEYS (1)[i]

z = rFi ⊕ KEYS (2)[i] //Compute the key from the

L column as KEYS (1)
[i] ⊕ KEYS (2)

[i], which corresponds to

Fkf
(bFi) ⊕ Fkf

(rFi | |bFi) in the F column of the SES object.

if SES.F[z] ,⊥
continue

else KEYS = KEYS − KEYS[i] //Remove all the non

matched elements from the key set KEYS.

K = KEYS
(6) if K ==⊥ return ⊥
(7) The cloud sends to the user SES.FM′[K]. The client runs

the inverse permutation Ππ2 to the K indexes and gets

back {i ′} and asks the cloud for SES.FM′[{i ′}]. After getting
back the results the client decrypts pos = E(ke, SA[{i

′}])
with ke and learns the position pos of the asked substring

T in S . In case flag == 0 user accepts the result as correct

if dpos ≤ pos ≤ n − dpos and pos +m < dpos + n.
(8) if flag == 1 recap that the LF traversal on the FM index

starts at the last character and proceeds invertly. Notice

that we excluded at step 1 during the else branch the re-

maining last bucket as it will always be a mismatch even

if the first characters match the user search pattern. So the

cloud returns also B’[pos]. The client runs the permutation

pos′ = Πkπ3
(pos) and asks the cloud to return the bucket

bpos ′ . Then client checks if the first m mod win charac-

ters of the decrypred bucket equals the lastm mod win
characters of the search pattern and accepts the pos as

valid otherwise discards the result.

7 SECURITY ANALYSIS
We illustrate the security of the scheme pertaining to definition 2.2.

User splits the original data stream S in consecutive buckets of size

win by moving each time the window to the right one character.

More specifically, we show the existence of a simulator S, who has

access to the leakage function L and produces indistinguishable

views to an adversaryA. Conceptually the proof demonstrates that

an adversaryA, who can be a semi-honest cloud cannot learn more

information from what it can be leaked in an ideal work without

malicious behaviors. During the encryption of the index users write

to the LLSet linked list and to a three dimensional array FM. FM
consists of three columns: F, L from the BWT transformation, which

are used to traverse the string, and the SA column, which consists of

encrypted positions of the corresponding suffixes. To avoid leakage

of frequencies users pad each linked list LLSet. In order to impede

off-line traversal of the index, the user further encrypts the header

of each linked list. Moreover, two different permutations Πkπ1,2

are applied first on all the rows of the first two columns F, L and

then to the SA column to prevent an adversary from correlating

encrypted positions to intermediate results after having obtained a

token. I.e: without the permutation, A after obtaining a token can

stop the search to a substring of the queried substring and learn the

associated encrypted position from SA column. After A observing

LLSet and FM it learns the size of the padded string n′.
During the the search phase the adversaryA observes encrypted

tokens. Between two encrypted tokens A can identify similarity

in between two tokens: i.e: whether two identical token have been

issued, or identical encrypted buckets in between the tokens. Then

we point out two different cases:

(1) Size of token multiple of win: The user leaks to the cloud
howmanymatches exist in the string S for the queried token,
the encrypted cells at SA, which correspond to the matched

positions.

(2) Size of token not a multiple of win: The user in case

of a token, whose size is not a multiple of the size win
of each bucket, needs to verify the correctness of the po-

tential encrypted match(s). As such the cloud returns the

permuted possible position pos. User decrypts and applies

pos′ = Πkπ3
(pos) and asks the cloud to return the bucket

at position pos′. The cloud learns the encrypted position of

the last bucket of the token and its encrypted text.

Integrity guarantees of the data and the index are assured thanks

to the use of authenticated symmetric cryptography. Before stating

our theorem concerning the security of S3E we formally define our

leakage function L from our aforementioned analysis.

Definition 7.1. A leakage function L for a S3E scheme comprises

the following three leakage functions:

• PreProcess Leakage: L1 includes the padded size of the data

stream n′ >= |S |.
• SrchToken Leakage: The SrchToken Leakage L2 reveals the

length of the token |tk|, howmany common characters reside

in it and similarity patterns between different tokens.

• Search Leakage: L3 leaks how many times a substring token

tk exists in the padded string S with dummy blocks.

• Intermediate: Leakage L4 leaks intermediate addresses of

the F and L columns of a query.

• Access pattern: Leakage L5 leaks the addresses of the SA
cells for a fixed query.

To eliminate L2, . . . ,L5 leakage profiles an expensive ORAM

scheme can be used, however it is out of the scope of the paper, as

it will increase communication and storage overhead drastically.

Theorem 7.2. Let Fkf
,Πkπ , SKE = {Gen, Enc,Dec} be a pseudo-

random function, a pseudorandom permutation, a semantically secure
symmetric encryption scheme respectively, then our substring search-
able symmetric encryption scheme S3E is adaptively L-semantically
secure.

Game Change Indistinguishability Argument

Game0 Game0 = RealS
3E
A (λ) By definition

Game1 Replace Fkf
, Fkl

Pseudorandomness of Fkf
Game2 Replace Πkπ1,2,3,

Pseudorandomness of Πkπ
Game3 Replace SKE = {Gen, Enc, Dec} Semantically secure SKE = {Gen, Enc, Dec}

Game4 Game4 = IdealS
3E
A,S (λ) By definition

Table 2: Hybrid games

Theorem 7.3. Let Fkf
,Πkπ , SKE = {Gen, Enc,Dec} be a pseu-

dorandom function, a pseudorandom permutation and a semanti-
cally secure symmetric encryption scheme respectively, then our sub-
string searchable symmetric encryption scheme S3E is adaptively
L-semantically secure.

Proof. (Sketch)

In the RealS
3E
A (λ) world (cf. 2.2) the adversary can obtain the

encrypted index and encrypted keywords of its choice. In the be-

ginning the Challenger selects the size of the buckets win and

uniformly at random keys k = (kf , kl, kπ1,2,3 , ke,c) for a PRF Fk :

{0, 1}λ × {0, 1}ν → {0, 1}µ , a PRP Πkπ : {0, 1}λ × {0, 1}ν → {0, 1}ν

and a symmetric encryption algorithm SKE = {Gen, Enc,Dec}.
Upon receipt of a stream S of size n, the Challenger employs the SES
← PreProcess(k, S) as presented in section 6 and forwards SES to
A. We distinguish betweenmatchingqm and non-matching queries

qnm : q =
⋃
qnmqm . We assume for the ease of readability that ad-

versary issues only matching queries qm . During the Search phase,

C has also access to L2=similarities between tokens, L3=# times a

token exist in the substring. C upon receipt of q checks in a table

QT whether q ∈ QT . If so C fetches the corresponding token tkT ,S
and forwards it to A. If this is the frist time for q then C computes

tkT ,S = C[1],C[2], · · · ,C[m] ← Fkf
(T [1...m]), Fr (T [m]). Finally

A receives t = (tk1, tk2, tk3, . . . , tko) for each substring query.

Within a sequence of hybrid games we show the indis-

tinguishable transformation of RealS
3E
A (λ) game to eventually

the IdealS
3E
A,S (λ) game, which concludes the proof. The sim-

ulator S computes the simulated encrypted index SES∗ =

(LLSet∗, LL∗c , FM
′∗) as follows:

• Game0: This game is equivalent with the RealS
3E
A (λ) game.

• Game1: This game behaves as the RealS
3E
A (λ) game with the

difference that S does not have access to S . The simulator

through the L1 leakage function builds the substring en-

crypted structure SES as follows: We assume the existence

of an algorithm S ← Build(n′, str), which takes as input

n′ ∈ N and the structure str = {b}n
′

i=1, b ∈ Σ∗ and outputs

a bitstring of length n′, from a vocabulary Σ∗. Notice that
as in the real game the valid length of the original stream

is not revealed and only the length of the string after the

padding n′ is leaked. S selects uniformly at random keys

k = (kf , r , kπ , ke) for a PRF Fkf
: {0, 1}λ × {0, 1}ν → {0, 1}µ ,

a PRP Πkπ : {0, 1}λ × {0, 1}ν → {0, 1}ν and a symmet-

ric encryption algorithm SKE = {Gen, Enc,Dec} and runs

SES← PreProcess(k,Build(L1)). S uses Fkf
to evaluate bit

strings of length cn : L2 (q) = cn . For the simulation of the

tokens and its responses, S uses the leakage obtained from

L2 . . .L5.

• Game2: This game behaves similarly with Game1, but we re-
place the Fkf

with a real random function which is evaluated

through access to an oracle ORF (λ, µ,ν).
• Game3: This game behaves similarly with Game2, but we
replace the Πkπ with a real random permutation which is

evaluated through access to an oracle ORΠ (λ,ν).
• Game4: In Game4 we replace the semantically secure SKE =
{Gen, Enc,Dec} with real random values by querying an

oracle ORE (λ).

We write Gamei ≈ Gamej to denote that the view of proba-

bilistic polynomial time adversary A is indistinguishable between

the output of Gamei and Gamej . Game0 = RealS
3E
A (λ) by definition,

Game1 ≈ Game0 as long as no collisions happen to the evaluation

of Fkf
, Πkπ , SKE = {Gen, Enc,Dec} or E, Game2 ≈ Game1 as long

as Fkf
is indistinguishable from real random function, Game3 ≈

Game2 thanks to the indistinguishable output of Πkπ from real ran-

dom permutations, Game4 ≈ Game3 because of the semantically

secure SKE = {Gen, Enc,Dec} and finally Game5 = IdealS
3E
A,S (λ)

by definition.

□

8 PERFORMANCE
In this section we present our implementation results. We demon-

strate the practicality of S3E with benchmark experiments, com-

paring our results with the scheme of Chase et al. [7], in order to

validate the claims of our performance improvements. To accom-

plish the comparison we also implemented the suffix tree based

construction of [7] called hereafter ST.

8.1 Implementation
Our comparison is based on two metrics: a) storage overhead for

the encryption of the index and the computation of a substring

query as an encrypted token, b) computation time of each opera-

tion. The reported computation times for each experiment are taken

as the average of 100 trials. As we implemented both schemes on

the same machine, which simulates both the client and the server,

we can derive accurate and fair observations about the performance

of the protocols on real metrics. In the real world the server can

be implemented in a more powerful machine, however this does

not change the storage overhead or the computation performance

fraction of both schemes.

Thanks to our encrypted suffix array construction, we achieve

a storage improvement by a factor of 1.71 for the DNA sequence

data stream and 1.57 for the enron email data. This occurs first

because of the extra information a node of the suffix tree should

keep (leaf nodes, parent nodes, auxiliary information for the sub-

string of the path in the tree) and due to the dummy nodes policy,

which increases the size of the tree. Subsequently that affects the

computation time for the computation of the encrypted index with

a ≈ 4x blowup on average for data sets of size 10
6
.

8.2 Benchmarks
8.2.1 Index. In tables 3,4, we depict the storage and computa-

tional overhead incurred by the computation of the encrypted index

using the suffix array in S3E using different window sizes for the

buckets and the suffix tree in ST scheme of [7].

We observed an increased overhead in the size of the encrypted

index for the ST scheme [7], compared with ours as expected. On

average, over all the the data sizes, for different data sets the gain of

S3E over ST approximates a factor of 1.64. However, for realistic big
data streams consisting of 10

6
the gain reaches a factor of 2. Even

though the computation of the encrypted index happens only once,

the storage overhead incurred by its encryption is of more crucial

importance than its computation time. A limited storage device is

not capable of computing the encrypted index if that comes at an

increased communication overhead.

We also measured the computation time of the encrypted index

in both schemes in tables 3, 4. The S3E index construction time

outperforms ST. Apart from the extra dummy blocks and the in-

creased size of the suffix tree compared with that of a suffix array,

the increased computation cost stems from the way ST encrypts

the suffix tree.

2^6 2^7 2^8 2^9 2^10 2^12
#Characters in the query

0

100

200

300

400

500

Si
ze

 in
 K

B

ST
S^3

Encrypted Query Size Overhead

Figure 3: Token storage overhead for both schemes in DNA streams.
As the window size affects very epidemically the encryption of our
query we use a fixed window size: win = 2

5

8.2.2 Query Encryption. We run experiments in order to com-

pute the storage overhead during the SrchToken phase. The token

consists of a sequence of buckets from a vocabulary: be it charac-

ters from emails or characters from DNA sequence. As the query

encryption is not affected by the distribution of the underlying

characters and for compactness we choose to present results only

from the DNA sequence. We also observed tiny differences at the

2^6 2^7 2^8 2^9 2^10 2^12
#Characters in the query

0

10

20

30

40

50

60

70

80

Ti
m

e
in

 m
s

ST
S^3

Query Computation time

Figure 4: Token computation time for both schemes inDNA streams.
As the window size affects very epidemic the encryption of our
query we use a fixed window size: win = 2

5

query encryption time and the size of the bucket. We observe a

reasonable increase in both the size of the encrypted query (fig-

ures 3,4) and its computation time as the query size increases. S3E
outmatches in query computation time due to the way the query

is encrypted in ST scheme: Namely for each character 2 PRF, and

one block cipher is invoked, while in S3E only one PRF is invoked.

The storage overhead of ST also outgrows faster since the sub-

string is encrypted recursively and not by character. That is, the

token: T [1],T [2], ...,T [m] is encrypted as ct1 = PRF1 (T [1]),k1 =
PRF2 (T [1]), ct2 = PRF1 (T [1]T [2]),k2 = PRF2 (T [1]T [2]) and so on.

Finally the client forwards to the cloud: {Encki (cti)}
m
i=1.

64 128 256 512
Query size in characters

0

10

20

30

40

50

60

70

Ti
m

e
se

co
nd

s

|10^6| dataset
|10^5| dataset
|10^4| dataset

Figure 5: Response time for S3E scheme in a DNA stream. Time is
measured as the average over different bucket sizes: 2, 23, 25

8.2.3 Response Overhead. In figures 5, 6 we discern a slight

outperformance of S3E compared with ST in terms of substring

response time. For the experiments we computed tokens of various

lengths and perform a search on DNA streams of different sizes.

Dataset #Characters
10

2
10

3
10

4
10

5
10

6

Storage Time Storage Time Storage Time Storage Time Storage Time
DNA 60KB 0.44s 567KB 1.07s 6.4MB 9.66s 63MB 89.50s 589MB 1382s

Enron 57KB 0.42s 562KB 0.97s 6.3MB 9.07s 62MB 85.74s 579MB 1268s

Table 3: [7] Index storage and computational overhead for variable size data sets.

Dataset #Characters
10

2
10

3
10

4
10

5
10

6

Storage Time Storage Time Storage Time Storage Time Storage Time
DNA

win = 2 37KB 0.26s 410KB 49s 4.2MB 3.50s 42MB 29.90s 456MB 728s

win = 2
3

38KB 0.15s 401KB 48s 4.1MB 3.46s 40MB 29.78s 410MB 683s

win = 2
5

29KB 0.11s 371KB 43s 3.7MB 2.34s 37MB 26.12s 373MB 640s

Enron

win = 2 40KB 0.29s 402KB 50s 4.1MB 3.69s 41MB 30.65s 471MB 702s

win = 2
3

38KB 0.17s 396KB 46s 4MB 3.42s 40MB 29.23s 401MB 678s

win = 2
5

29KB 0.10s 385KB 42s 3.7MB 2.56s 37MB 27.50s 372MB 630s

Table 4: S3E Index storage and computational overhead for variable size data sets and buckets window size.

64 128 256 512
Query size in characters

0

20

40

60

80

100

Ti
m

e
se

co
nd

s

|10^6| dataset
|10^5| dataset
|10^4| dataset

Figure 6: Response time for ST [7] scheme

The client computes and encrypts the index and uploads it to the

cloud. The cloud simulated in the same machine runs the search

algorithm, and we computed the total search time. We perceived in

both schemes, that for considerable smaller than 10
6
elements the

running time tends to be independent on the size of the substring

token. For a one million data stream there is a notable increased

response time compared with the smaller data sets and there is

a proportional increment in time with respect to the size of the

token. In exact times, S3E surmounts ST [7] for the computation of

the response at the cloud side. This outperformance is due to the

increased size of the encrypted index in [7] with dummy blocks,

based on a suffix tree data structure.

9 COMPARISON
We perform a comparison of our S3E with existing solutions (cf.

table 5). We analyzed the search running time in asymptotic com-

plexity, index space requirements both in the plaintext and in the

ciphertext space, query size, variable length capability, rounds of

communication and search leakage. Since our scheme competes

mostly with [7] here we further elaborate its cost analysis from

table 5.

Search. Thanks to the usage of encrypted dictionary the cost of

searching am length string isO (m+k), wherek denotes the number

of occurrences. However, due to the extra dummy blocks the search

cost is increased to O (m + k +
∑k
j=1 (maxb − fbi)), where maxb is

the most frequent bucket and fbi the frequency of bucket bi .
Index. For the index space complexity, we analyzed the space

requirement in the plaintext space and in the ciphertext space. For

the plaintext space analysis we assume, that a pointer or integer

requires 4 bytes. Recall that a suffix tree has n leaves, at most n − 1

internal nodes and at most 2n−2 edges. Thus, for a naive suffix tree

implementation we need 2 pointers for each leaf: one for the parent

node and one for its position to the original stream, resulting in

8n bytes. Four pointers for each internal node: one for the parent

node, one for each leftmost child, one for the right sibling and one

pointer for the suffix link, which reduces the search time during

a substring query. The total storage cost for the internal nodes is

4 ∗ 4n = 16n. For each edge, suffix trees allocate one pointer for

the beginning position of the substring in the stream and one for

the end position of the substring in the stream increasing the space

cost to 24n + 4 ∗ 2 ∗ 2n = 40n. The space cost of the solution based

on suffix trees [7] can be further reduced to 20n by eliminating the

need to store suffix links and parent pointers. However, the extra

dummy blocks further augment the storage overhead. Assuming a

suffix tree withN internal, each node is further paddedwith dummy

children nodes so as to each node has σ children, where σ is the

size of the vocabulary. Furthermore, the internal nodes are padded

with up to 2n − 2 nodes where n is the size of the string. Finally the

size of the extra dummy nodes in [7] is: Σ
2n−(2+N)
i=1 (σ − child (i)),

where child (i) equals the number of children for internal node i in
the suffix tree. In contrast, in S3E we replace the space expensive

suffix trees with suffix arrays and as such the index space cost is

reduced from 20n bytes to 4n bytes.

For the storage space computation during the encryption of the

index, be it suffix tree or suffix array, we exclude a per byte com-

parison and we assume a ciphertext comparison. The encryption

of the index is based on the translation of the suffix tree to an en-

crypted dictionary. Thus, all the extra pointers of the suffix tree

Protocol Search Index [PS|CS] Query [FR|LR] VLS Rounds SL

CS[7] O (m + k) 20n 4(n + Σ
2n−(2+N)
i=1 σ − child (i)) m (m+1)

2θ m+k ✓ 3 SP+QPP+IIP+LIP

FJKNRS[11] O (n) - m 0 ✓ 1 SP

FHV[12] O (n −m) - m 0 ✗ 1 ✗

S3E O (m + k) 4n 4(n +
∑k
j=1 maxb − fbi) m 1 ✓ 2, 3 SP+QPP+IIP

Table 5: Comparison of existing substring searchable encryption protocols. Index space is further categorized in plaintext space index storage
space (PS) and ciphertext space (CS). The overhead of [11] and [12] is undefined as the schemes do not take advantage of any auxiliary data
structure for efficient substring search. For the query complexity we analyzed its size in terms of two separated phases: at the first round (FR)
of the protocol and the last one (LR), in case of multiple rounds protocols. VLS denotes variable length substring search and SP the search
patternleakage: QPP: Query prefix pattern, IIP: Index intersection pattern, LIP: Leaf intersection pattern.

are excluded. Following the protocol from [7], the user encrypts 2n
substrings which are equal to the number of edges of the suffix tree

plus n leaves and n characters of the original stream, resulting in

4n encryptions. In our solution thanks to the FM mapping the user

sends the encrypted suffix array, plus two more n size arrays for

the FM index construction; one for the F column of the index and

one for the L column. In the end it uploads 4(n +
∑k
j=1 maxb − fbi)

encrypted values to the cloud, in total.

Query. For the query size, we assume a block cipher of size θ
and a substring query of sizem. In [7] the substring is encrypted

incrementally: for the substring “abc” user encrypts separately E(a),

E(ab), E(abc). As such, for big substring queries as in DNA queries,

the number of ciphertexts exceeds the number of the substring

m. The total number of encryptions equals
1

θ +
2

θ + · · · +
m
θ =

m (m+1)
2θ during the first round. At the last round the user asks for

the positions of each character separately augmented by a factor

of m the substring size. In S3E the substring query has only per

character encryptions of each character in the first round plus a

ciphertext for the last round. Our solutions also allows variable size

substring queries, since the size of the substring query is decoupled

from the scheme and can be defined online during the query phase

as in [7].

Rounds. Regarding the rounds of communication, S3E can return

the substring search results in 2 rounds of communication or in

3 when the query size is not a multiple of the bucket size win.
During the first round, the client sends an encrypted substring

query and the cloud responds with the encrypted addresses of the

corresponding suffix array positions. At the second round the client

decrypts the permuted position of the suffix tree and asks the cloud

for the unpermuted encrypted position. A third round is performed

when a query is not a multiple of the size of the bucket, whereby

the client verifies the correctness of the possible match.

Security Leakage. Concerning the search leakage, Chase et al. [7]
scheme leaks the search pattern, meaning an untrusted could can

identify similarities between two or more substring search queries.

Moreover, the scheme reveals the query prefix pattern, which leaks

whether a node has been visited for a previous substring in the

suffix tree, the index intersection pattern which allows the cloud

to learn if the returned index position has already been asked and

finally, the leaf index leaks when any of the returned positions

of the tree leaves have been previously queried. Since in S3E we

avoid the use of a suffix tree, S3E does not leak the leaf pattern.

We inherit though, the index intersection pattern, which reveals

if any returned index has been returned in a previous query. As

in [7] our scheme reveals also the cloud differences of the indexes

when a user asks for substrings that they do differ in one position

and there is only a single position in the original stream S . Both
schemes employ a padding policy to add dummy blocks in order

to obfuscate the structure of the index and the stream. S3E is also

adaptively secure under the real-ideal simulation paradigm. We

also use an authenticated encryption scheme in order to assure the

integrity of the messages.

10 CONCLUSION
We designed and analyzed a substring searchable symmetric en-

cryption protocol S3E, which achieves better storage performance

than state of the art work [7]. The idea of our protocol is to lever-

age the self-indexing mechanism of FM index, which stores only n
integer positions of its substrings. Our protocol is provably secure

under the real-ideal paradigm. We also implemented our protocol

and compared it with the state of the art work [7], showing its

notable performance improvement in terms of storage overhead

and computation time.

As part of future we will investigate solutions for substring

queries on encrypted data, which further reduce the search time

by tolerating accuracy. This is achieved with approximation algo-

rithms. To the best of our knowledge, at the time of this writing, the

literature has not addressed how to perform approximation queries

for substring queries on encrypted data. Moreover, we seek to look

for solutions, which scale better in terms of computational time

by leveraging parallelization: Due to the large amount of data pro-

duced in the stream of a DNA sequence, the client may outsource

the task of computing the FM index in different servers, each one

holding a portion of the data stream. It is becoming challenging how

those servers can compute the encrypted index. Recent progress

in the area of algorithms has shed some light [36], but tweaking

the algorithms to operate on encrypted data without leaking more

than it is accepted, needs further research.

REFERENCES
[1] Mohamed IbrahimAbouelhoda, Enno Ohlebusch, and Stefan Kurtz. 2002. Optimal

Exact String Matching Based on Suffix Arrays. In In Proceedings of the Ninth
International Symposium on String Processing and Information Retrieval. Springer-
Verlag, Lecture Notes in Computer Science.

[2] Robert S. Boyer and J. Strother Moore. 1977. A Fast String Searching Algorithm.

Commun. ACM 20, 10 (Oct. 1977), 762–772.

[3] M. Burrows and D. J. Wheeler. 1994. A block-sorting lossless data compression
algorithm. Technical Report.

[4] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin

Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-

tion with Support for Boolean Queries. In Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I. 353–373.

[5] Yan-Cheng Chang andMichael Mitzenmacher. 2005. Privacy Preserving Keyword

Searches on Remote Encrypted Data. In Proceedings of the Third International
Conference on Applied Cryptography and Network Security (ACNS’05). Springer-
Verlag, Berlin, Heidelberg, 442–455.

[6] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled

Disclosure. In Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings. 577–594.

[7] Melissa Chase and Emily Shen. 2015. Substring-Searchable Symmetric Encryption.

PoPETs 2015, 2 (2015), 263–281. http://www.degruyter.com/view/j/popets.2015.

2015.issue-2/popets-2015-0014/popets-2015-0014.xml

[8] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable

Symmetric Encryption: Improved Definitions and Efficient Constructions. In

Proceedings of the 13th ACMConference on Computer and Communications Security
(CCS ’06). ACM, New York, NY, USA, 79–88.

[9] Emiliano De Cristofaro, Sky Faber, and Gene Tsudik. 2013. Secure Genomic

Testing with Size- and Position-hiding Private Substring Matching. In Proceedings
of the 12th ACMWorkshop on Workshop on Privacy in the Electronic Society (WPES
’13). ACM, New York, NY, USA, 107–118.

[10] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine

Shi, and Daniel Wichs. 2015. Onion ORAM: A Constant Bandwidth Blowup

Oblivious RAM. Cryptology ePrint Archive, Report 2015/005. (2015). http:

//eprint.iacr.org/2015/005.

[11] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin

Rosu, and Michael Steiner. 2015. Rich Queries on Encrypted Data: Beyond Exact

Matches. In Computer Security - ESORICS 2015 - 20th European Symposium on
Research in Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings,
Part II. 123–145.

[12] Sebastian Faust, Carmit Hazay, and Daniele Venturi. 2013. Outsourced Pattern

Matching. In Automata, Languages, and Programming, FedorV. Fomin, Rsiš

Freivalds, Marta Kwiatkowska, and David Peleg (Eds.). Lecture Notes in Computer

Science, Vol. 7966. Springer Berlin Heidelberg, 545–556.

[13] P. Ferragina and G. Manzini. 2000. Opportunistic Data Structures with Appli-

cations. In Proceedings of the 41st Annual Symposium on Foundations of Com-
puter Science (FOCS ’00). IEEE Computer Society, Washington, DC, USA, 390–.

http://dl.acm.org/citation.cfm?id=795666.796543

[14] Rosario Gennaro, Carmit Hazay, and Jeffrey S. Sorensen. 2016. Automata Evalua-

tion and Text Search Protocols with Simulation-Based Security. J. Cryptology 29,

2 (2016), 243–282.

[15] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana

Raykova, and Daniel Wichs. 2013. Optimizing ORAM and Using It Efficiently

for Secure Computation. In Privacy Enhancing Technologies - 13th International
Symposium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings. 1–18.

[16] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. J. ACM 43, 3 (May 1996), 431–473.

[17] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. 1992. Information

Retrieval. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, Chapter New Indices

for Text: PAT Trees and PAT Arrays, 66–82.

[18] Carmit Hazay and Yehuda Lindell. 2010. Efficient Protocols for Set Intersection

and Pattern Matching with Security Against Malicious and Covert Adversaries.

J. Cryptology 23, 3 (2010), 422–456.

[19] Carmit Hazay and Tomas Toft. 2010. Computationally secure pattern matching

in the presence of malicious adversaries. In Advances in Cryptology-ASIACRYPT
2010. Springer Berlin Heidelberg, 195–212.

[20] Juha Kärkkäinen and Peter Sanders. 2003. Simple Linear Work Suffix Array

Construction. In Automata, Languages and Programming, 30th International Collo-
quium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings.
943–955.

[21] Richard M. Karp and Michael O. Rabin. 1987. Efficient Randomized Pattern-

matching Algorithms. IBM J. Res. Dev. 31, 2 (March 1987), 249–260.

[22] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. 1977. Fast Pattern

Matching in Strings. SIAM J. Comput. 6, 2 (1977), 323–350.
[23] Yehuda Lindell. 2016. How To Simulate It - A Tutorial on the Simulation Proof

Technique. IACR Cryptology ePrint Archive 2016 (2016), 46. http://eprint.iacr.org/
2016/046

[24] Udi Manber and Gene Myers. 1990. Suffix Arrays: A New Method for On-line

String Searches. In Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’90). Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 319–327.

[25] Edward M. McCreight. 1976. A Space-Economical Suffix Tree Construction

Algorithm. J. ACM 23, 2 (April 1976), 262–272.

[26] Tarik Moataz and Erik-Oliver Blass. 2015. Oblivious Substring Search with

Updates. Cryptology ePrint Archive, Report 2015/722. (2015). http://eprint.iacr.

org/2015/722.

[27] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. 2015. Constant Commu-

nication ORAM with Small Blocksize. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security (CCS ’15). ACM, New York,

NY, USA, 862–873.

[28] Dimitrios Papadopoulos, Charalampos Papamanthou, Roberto Tamassia, and

Nikos Triandopoulos. 2015. Practical Authenticated Pattern Matching with

Optimal Proof Size. Proc. VLDB Endow. 8, 7 (2015), 750–761.
[29] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-

ung Geol Choi, Wesley George, Angelos Keromytis, and Steve Bellovin. 2014.

Blind seer: A scalable private dbms. In Security and Privacy (SP), 2014 IEEE Sym-
posium on. IEEE, 359–374.

[30] Olivier Sanders, Cristina Onete, and Pierre-Alain Fouque. 2017. Pattern Matching

on Encrypted Streams: Applications to DPI and searches on genomic data. Cryp-

tology ePrint Archive, Report 2017/148. (2017). http://eprint.iacr.org/2017/148.

[31] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious

RAM with O ((logN) 3) worst-case cost. In Advances in Cryptology–ASIACRYPT
2011. Springer Berlin Heidelberg, 197–214.

[32] E. Stefanov and E. Shi. 2013. ObliviStore: High Performance Oblivious Cloud

Storage. In Security and Privacy (SP), 2013 IEEE Symposium on. 253–267.
[33] Emil Stefanov, Elaine Shi, and Dawn Song. 2011. Towards practical oblivious

RAM. arXiv preprint arXiv:1106.3652 (2011).
[34] E. Ukkonen. 1958. On-line construction of suffix trees. Algorithmica 14, 3 (1958),

249–260.

[35] Peter Weiner. 1973. Linear pattern matching algorithms. In Switching and Au-
tomata Theory, 1973. SWAT ’08. IEEE Conference Record of 14th Annual Symposium
on. 1–11.

[36] Liu Y., Hankeln T., and Schmidt B. 2016. Parallel and Space-Efficient Construction

of Burrows-Wheeler Transform and SuffixArray for Big Genome Data. IEEE/ACM
Trans Comput Biol Bioinform 3 (2016), 592–598.

http://www.degruyter.com/view/j/popets.2015.2015.issue-2/popets-2015-0014/popets-2015-0014.xml
http://www.degruyter.com/view/j/popets.2015.2015.issue-2/popets-2015-0014/popets-2015-0014.xml
http://eprint.iacr.org/2015/005
http://eprint.iacr.org/2015/005
http://dl.acm.org/citation.cfm?id=795666.796543
http://eprint.iacr.org/2016/046
http://eprint.iacr.org/2016/046
http://eprint.iacr.org/2015/722
http://eprint.iacr.org/2015/722
http://eprint.iacr.org/2017/148

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Functional Requirements
	2.2 Security Model

	3 Related work
	4 Preliminaries
	4.1 Pattern matching
	4.1.1 BWT Transformation
	4.1.2 LF Mapping
	4.1.3 FM Index

	4.2 Cryptographic Primitives
	4.2.1 Pseudorandom functions (PRF)
	4.2.2 Pseudorandom permutations (PRP)

	4.3 Symmetric Key Encryption

	5 Intuition
	5.1 First Approach
	5.1.1 Encrypted Index
	5.1.2 Search

	5.2 Improved scheme
	5.2.1 Shortcoming
	5.2.2 Bucketization of characters

	6 Protocol
	7 Security Analysis
	8 Performance
	8.1 Implementation
	8.2 Benchmarks
	8.2.1 Index
	8.2.2 Query Encryption
	8.2.3 Response Overhead

	9 Comparison
	10 Conclusion
	References

