1,694 research outputs found

    Choice logics and their computational properties

    Get PDF
    Qualitative Choice Logic (QCL) and Conjunctive Choice Logic (CCL) are formalisms for preference handling, with especially QCL being well established in the field of AI. So far, analyses of these logics need to be done on a case-by-case basis, albeit they share several common features. This calls for a more general choice logic framework, with QCL and CCL as well as some of their derivatives being particular instantiations. We provide such a framework, which allows us, on the one hand, to easily define new choice logics and, on the other hand, to examine properties of different choice logics in a uniform setting. In particular, we investigate strong equivalence, a core concept in non-classical logics for understanding formula simplification, and computational complexity. Our analysis also yields new results for QCL and CCL. For example, we show that the main reasoning task regarding preferred models is Θ2p\Theta^p_2-complete for QCL and CCL, while being Δ2p\Delta^p_2-complete for a newly introduced choice logic.Comment: This is an extended version of a paper of the same name to be published at IJCAI 202

    CSMA/RN: A universal protocol for gigabit networks

    Get PDF
    Networks must provide intelligent access for nodes to share the communications resources. In the range of 100 Mbps to 1 Gbps, the demand access class of protocols were studied extensively. Many use some form of slot or reservation system and many the concept of attempt and defer to determine the presence or absence of incoming information. The random access class of protocols like shared channel systems (Ethernet), also use the concept of attempt and defer in the form of carrier sensing to alleviate the damaging effects of collisions. In CSMA/CD, the sensing of interference is on a global basis. All systems discussed above have one aspect in common, they examine activity on the network either locally or globally and react in an attempt and whatever mechanism. Of the attempt + mechanisms discussed, one is obviously missing; that is attempt and truncate. Attempt and truncate was studied in a ring configuration called the Carrier Sensed Multiple Access Ring Network (CSMA/RN). The system features of CSMA/RN are described including a discussion of the node operations for inserting and removing messages and for handling integrated traffic. The performance and operational features based on analytical and simulation studies which indicate that CSMA/RN is a useful and adaptable protocol over a wide range of network conditions are discussed. Finally, the research and development activities necessary to demonstrate and realize the potential of CSMA/RN as a universal, gigabit network protocol is outlined

    Scalable parallel communications

    Get PDF
    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth service to a single application); and (3) coarse grain parallelism will be able to incorporate many future improvements from related work (e.g., reduced data movement, fast TCP, fine-grain parallelism) also with near linear speed-ups

    Reconstruction of Clothing Menak Sunda Media Planting Values Culture Local Wisdom Sunda

    Full text link
    The scope of this study relates to the reconstruction of the Sunda ethnic clothing, especially in Bandung marvelous fashion with the intention to reinvest the values of local wisdom Sundanese culture. On Sunda marvelous fashion reconstruction used an experimental method with the following stages: a. Making fashion design Menak Sunda, b. Selection of materials/ material, c. Manufacture of clothing Menak Sunda/ Bandung. Experimental method used to reintroduce a form of fashion Menak Bandung to the public. The results showed that clothing menak Sundanese source can be found in museums Prabu GESAN Ulun is Menak Clothing Bandung. Reconstruction fashion Menak also functions as a medium in instilling the values of local wisdom of Sundanese culture, especially related to the fashion area of Indonesia. Clothing is a cultural phenomenon in a culture, because it is through the visual language/ visualization of clothing, it can be studied, explored and revealed the values contained therein. It also can be a communication medium that has a historical past and the meaning of positive values for the local culture then submitted at the present or future

    Microtubule appendages mediating T-cell motility and polarity

    Get PDF
    © 2015 The Royal Society of Chemistry. Polarization of the centrosome and the Golgi apparatus in the T cell (TC) toward the antigen-presenting cell (APC) is essential for the specificity of the immune response on the cellular level. Previously we reported the existence of thin, long processes on the TC surface, which emanated predominantly from the area next to the Golgi apparatus. They appeared to be involved in the orientation of the TC during the initial phases of its attachment, which preceded the formation of the immunological synapse mediated by lamellipodia. Here we improve the visualization of the long, thin protrusions in the cultured TC and demonstrate using cytoskeleton inhibitors and immunofluorescence that microtubules form their cytoskeletal basis. The protrusions are seen prior to the attachment and the development of the broad lamellipodia (within a few minutes). We propose the term "tubulopodia" for this distinct type of cell appendage. Using an established experimental model that replaces the APC surface with a biomimetic substrate coated with antibodies against the TC receptor (TCR), we demonstrate that abrogation of the lamellipodium-mediated synapse formation does not impede the orientation of the TC Golgi apparatus and the centrosome to the contact area. Video microscopy reveals the spreading of the tubulopodia on the TCR-binding substrate, which results in the area of their emanation, and consequently the Golgi apparatus and the centrosome, being closely apposed (polarized) to the TCR-binding surface. Treatment with paclitaxel made the tubulopodia rigid, preventing their attachment to the TCR-binding surface and the reorientation of the cell body with the intracellular structures. We speculate that the motility and polarity of the TC in vivo may be mediated on a large scale by differential adhesion through the long, flexible tubulopodia

    Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets

    Get PDF
    T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. © 2009 Kim, Maly

    Extracorporeal Immunoglobulin Elimination for the Treatment of Severe Myasthenia Gravis

    Get PDF
    Myasthenia gravis (MG) is a neuromuscular disorder leading to fluctuating muscle weakness and fatigue. Rarely, long-term stabilization is not possible through the use of thymectomy or any known drug therapy. We present our experience with extracorporeal immunoglobulin (Ig) elimination by immunoadsorption (adsorbers with human Ig antibodies). Acetylcholine receptor antibodies (AChRAs) were measured during long-term monitoring (4.7 ± 2.9 years; range 1.1–8.0). A total of 474 samples (232 pairs) were analyzed, and a drop in AChRA levels was observed (P = .025). The clinical status of patients improved and stabilized. Roughly 6.8% of patients experienced clinically irrelevant side effects. The method of Ig elimination by extracorporeal immunoadsorption (IA) is a clinical application of the recent biotechnological advances. It offers an effective and safe therapy for severe MG even when the disease is resistant to standard therapy

    The pseudogap state in superconductors: Extended Hartree approach to time-dependent Ginzburg-Landau Theory

    Full text link
    It is well known that conventional pairing fluctuation theory at the Hartree level leads to a normal state pseudogap in the fermionic spectrum. Our goal is to extend this Hartree approximated scheme to arrive at a generalized mean field theory of pseudogapped superconductors for all temperatures TT. While an equivalent approach to the pseudogap has been derived elsewhere using a more formal Green's function decoupling scheme, in this paper we re-interpret this mean field theory and BCS theory as well, and demonstrate how they naturally relate to ideal Bose gas condensation. Here we recast the Hartree approximated Ginzburg-Landau self consistent equations in a T-matrix form. This recasting makes it possible to consider arbitrarily strong attractive coupling, where bosonic degrees of freedom appear at T T^* considerably above TcT_c. The implications for transport both above and below TcT_c are discussed. Below TcT_c we find two types of contributions. Those associated with fermionic excitations have the usual BCS functional form. That they depend on the magnitude of the excitation gap, nevertheless, leads to rather atypical transport properties in the strong coupling limit, where this gap (as distinct from the order parameter) is virtually TT-independent. In addition, there are bosonic terms arising from non-condensed pairs whose transport properties are shown here to be reasonably well described by an effective time-dependent Ginzburg-Landau theory.Comment: 14 pages, 5 figures, REVTeX4, submitted to PRB; clarification of the diagrammatic technique added, one figure update

    Magnetic Field Effects in the Pseudogap Phase: A Competing Energy Gap Scenario for Precursor Superconductivity

    Full text link
    We study the sensitivity of T_c and T^* to low fields, H, within the pseudogap state using a BCS-based approach extended to arbitrary coupling. We find that T^* and T_c, which are of the same superconducting origin, have very different H dependences. This is due to the pseudogap, \Delta_{pg}, which is present at the latter, but not former temperature. Our results for the coherence length \xi fit well with existing experiments.We predict that very near the insulator \xi will rapidly increase.Comment: 4 pages, 4 figures, RevTe

    A computationally engineered RAS rheostat reveals RAS-ERK signaling dynamics.

    Get PDF
    Synthetic protein switches controlled with user-defined inputs are powerful tools for studying and controlling dynamic cellular processes. To date, these approaches have relied primarily on intermolecular regulation. Here we report a computationally guided framework for engineering intramolecular regulation of protein function. We utilize this framework to develop chemically inducible activator of RAS (CIAR), a single-component RAS rheostat that directly activates endogenous RAS in response to a small molecule. Using CIAR, we show that direct RAS activation elicits markedly different RAS-ERK signaling dynamics from growth factor stimulation, and that these dynamics differ among cell types. We also found that the clinically approved RAF inhibitor vemurafenib potently primes cells to respond to direct wild-type RAS activation. These results demonstrate the utility of CIAR for quantitatively interrogating RAS signaling. Finally, we demonstrate the general utility of our approach in design of intramolecularly regulated protein tools by applying it to the Rho family of guanine nucleotide exchange factors
    corecore