55 research outputs found

    Supplementary data for the article: Malenov, D. P.; Zarić, S. D. Stacking Interactions of Aromatic Ligands in Transition Metal Complexes. Coordination Chemistry Reviews 2020, 419, 213338. https://doi.org/10.1016/j.ccr.2020.213338

    Get PDF
    Supplementary material for: [https://doi.org/10.1016/j.ccr.2020.213338]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/4030

    Study of parallel interactions of delocalized [Pi]-systems in transition metal complexes using quantum chemical and informatic methods

    Get PDF
    Паралелне стекинг интеракције η-координованих ароматичних лиганада и хелатних прстенова испитиване су претраживањем Кембричке базе структурних података и квантнохемијским прорачунима. Најјаче стекинг интеракције између координованих молекула бензена (-4,0 kcal/mol) и координованих циклопентадиенил-анјона (-3,3 kcal/mol) су паралелно-смакнуте, и јаче су од стекинг интеракција у димеру бензена (-2,7 kcal/mol). Међутим, анализа кристалних структура показала је да координовани бензен и циклопентадиенил-анјон формирају велики број стекинг интеракција на великим хоризонталним померањима, услед тога што формирање таквих интеракција доводи до успостављања стабилнијих супрамолекулских структура. Стекинг интеракције на великим хоризонталним померањима су веома типичне за сендвич-једињења бензена и циклопентадиенил-анјона, с обзиром да поседују око 75% енергије најјаче стекинг интеракције. Ове интеракције се ређе јављају између полусендвич-једињења, јер њихова јачина не прелази 55% енергије најјаче стекинг интеракције. За разлику од координованих ароматичних прстенова, хелатни прстенови не граде јаке стекинг интеракције на великим хоризонталним померањима. Најјаче хелат-арил стекинг интеракције имају паралелно-смакнуте геометрије, што је у сагласности са врло израженом доминацијом ових геометрија у кристалним структурама. Најјача израчуната стекинг интеракција између хелатног прстена acac типа и бензена има енергију од -7,2 kcal/mol, што хелат-арил интеракције чини значајно јачим од стекинг интеракција у димеру бензена. Утврђено је да јачине хелат-арил стекинг интеракција расту у 3d низу метала, услед јачања електростатичког привлачења, с обзиром на сличне дисперзионе интеракције. Јачине хелат-арил стекинг интеракција сличне су за све метале у 10. групи ПСЕ, као последица надокнађивања мање повољне електростатике повољнијом дисперзијом и обратно...Parallel stacking interactions of η-coordinating aromatic ligands and chelate rings were studied by searching the Cambridge Structural Database and by performing quantum chemical calculations. The strongest stacking interactions between coordinating benzenes (-4.0 kcal/mol) and between coordinating cyclopentadienyl-anions (-3.3 kcal/mol) are parallel-displaced, and they are stronger than stacking interactions in benzene dimer (-2.7 kcal/mol). However, analysis of crystal structures has shown that coordinating benzene and cyclopentadienyl-anion form a large number of stacking interactions at large horizontal displacements, since the formation of these interactions leads to establishing of more stable supramolecular structures. Stacking interactions at large horizontal displacements are typical for sandwich compounds of benzene and cyclopentadienyl-anion, since they possess around 75% of energy of the most stable stacking interaction. These interactions occur less frequently between half-sandwich compounds, since their strength does not exceed 55% of energy of the strongest stacking interaction. Unlike coordinating aromatic rings, chelate rings do not form strong stacking interactions at large horizontal displacements. The strongest chelate-aryl stacking interactions have parallel-displaced geometries, which is in agreement with huge dominance of these geometries in crystal structures. The strongest calculated stacking interaction between acac type chelate ring and benzene has the energy of -7.2 kcal/mol, which makes chelate-aryl interactions much stronger than stacking interactions in benzene dimer. It was determined that the strength of chelate-aryl stacking interactions increases across the 3d row, due to increase in electrostatic attraction, with dispersion interactions being very similar. The strengths of chelate-aryl stacking interactions are similar for all metals of Group 10, since less favorable electrostatics are compensated by more favorable dispersion, and vice versa..

    Supplementary data for the article: Malenov, D. P.; Zarić, S. D. Strong Stacking Interactions of Metal-Chelate Rings Are Caused by Substantial Electrostatic Component. Dalton Transactions 2019, 48 (19), 6328–6332. https://doi.org/10.1039/c9dt00182d

    Get PDF
    Supplementary material for: [https://pubs.rsc.org/en/content/articlelanding/2019/DT/C9DT00182D#!divAbstract]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/3133]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/3134

    Supplementary data for the article: Malenov, D. P.; Hall, M. B.; Zarić, S. D. Influence of Metal Ion on Chelate–Aryl Stacking Interactions. International Journal of Quantum Chemistry 2018, 118 (16). https://doi.org/10.1002/qua.25629

    Get PDF
    Supplementary material for: [https://doi.org/10.1002/qua.25629]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2219

    Recognizing New Types of Stacking Interactions by Analyzing Data in the Cambridge Structural Database

    Get PDF
    Cambridge Structural Database (CSD) is the largest repository of crystal data, containing over 1.2 million crystal structures of organic, metal–organic and organometallic compounds. It is a powerful research tool in many areas, including the extensive studying of noncovalent interactions. In this review, we show how a thorough analysis of CSD crystal data resulted in recognition of novel types of stacking interactions. Even though stacking interactions were traditionally related to aromatic systems, a number of crystallographic studies have shown that nonaromatic metal–chelate rings, as well as hydrogen-bridged rings, can also form stacking interactions. Joined efforts of a CSD analysis and quantum chemical calculations showed that these new stacking interactions are stronger than stacking interactions of aromatic species and recognized them as very important attractive forces in numerous supramolecular systems

    Supplementary data for the article: Malenov, D. P.; Zarić, S. D. Strong Stacking Interactions of Metal-Chelate Rings Are Caused by Substantial Electrostatic Component. Dalton Transactions 2019, 48 (19), 6328–6332. https://doi.org/10.1039/c9dt00182d

    Get PDF
    Supplementary material for: [https://pubs.rsc.org/en/content/articlelanding/2019/DT/C9DT00182D#!divAbstract]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/3133]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/3134
    corecore