76 research outputs found

    Metabolic and molecular rearrangements of Sauvignon Blanc (Vitis vinifera L.) berries in response to foliar applications of specific dry yeast

    Get PDF
    Dry yeast extracts (DYE) are applied to vineyards to improve aromatic and secondary metabolic compound content and wine quality; however, systematic information on the underpinning molecular mechanisms is lacking. This work aimed to unravel, through a systematic approach, the metabolic and molecular responses of Sauvignon Blanc berries to DYE treatments. To accomplish this, DYE spraying was performed in a commercial vineyard for two consecutive years. Berries were sampled at several time points after the treatment, and grapes were analyzed for sugars, acidity, free and bound aroma precursors, amino acids, and targeted and untargeted RNA-Seq transcriptional profiles. The results obtained indicated that the DYE treatment did not interfere with the technological ripening parameters of sugars and acidity. Some aroma precursors, including cys-3MH and GSH3MH, responsible for the typical aromatic nuances of Sauvignon Blanc, were stimulated by the treatment during both vintages. The levels of amino acids and the global RNA-seq transcriptional profiles indicated that DYE spraying upregulated ROS homeostatic and thermotolerance genes, as well as ethylene and jasmonic acid biosynthetic genes, and activated abiotic and biotic stress responses. Overall, the data suggested that the DYE reduced berry oxidative stress through the regulation of specific subsets of metabolic and hormonal pathway

    Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource

    Full text link

    Modélisation de l'absorption de l'azote nitrique, de son allocation et de sa remobilisation chez le colza d'hiver (Brassica napus L.) de la reprise de végétation au stade maturité des graines

    No full text
    *UMR INRA-UCBN 950 EVA, Ecophysiologie végétale, Agronomie et Nutritions NCS. Université de Caen, esplanade de la Paix, 14032 Caen Cedex Diffusion du document : UMR INRA-UCBN 950 EVA, Ecophysiologie végétale, Agronomie et Nutritions NCS. Université de Caen, esplanade de la Paix, 14032 Caen Cedex Diplôme : Dr. Ing

    Breaking conceptual locks in modelling root absorption of nutrients: reopening the thermodynamic viewpoint of ion transport across the root

    No full text
    Ann. Bot.ISI Document Delivery No.: AU8CYTimes Cited: 0Cited Reference Count: 159Cited References: Adams F, 1971, PLANT ROOT ITS ENV, P441 Albert B, 2008, ARCHITECTURE RACINAI Aleman F, 2011, PLANT CELL PHYSIOL, V52, P1603, DOI 10.1093/pcp/pcr096 Anderson WP, 1973, ION TRANSPORT PLANTS, P630 ANDREWS M, 1986, PLANT CELL ENVIRON, V9, P511, DOI 10.1111/j.1365-3040.1986.tb01582.x AYADI A, 1974, ANN BOT-LONDON, V38, P677 Baker D. A., 1988, Solute transport in plant cells and tissues., P1 Barber SA, 1995, SOIL NUTR BIOAVAILAB, P49 Bassirirad H, 2008, QUANTIFYING UNDERSTA, P71 Bassirirad H, 2005, NUTR ACQUISITION PLA, P331 Beuve N, 2004, PLANT CELL ENVIRON, V27, P1035, DOI 10.1111/j.1365-3040.2004.01208.x BHAT KKS, 1979, PLANT SOIL, V53, P137, DOI 10.1007/BF02181888 BHAT KKS, 1979, PLANT SOIL, V53, P169, DOI 10.1007/BF02181889 BIELESKI RL, 1973, ANNU REV PLANT PHYS, V24, P225, DOI 10.1146/annurev.pp.24.060173.001301 Biondini M, 2008, J THEOR BIOL, V251, P35, DOI 10.1016/j.jtbi.2007.11.018 BOWLING D J F, 1976, P212 Britto DT, 2001, PLANTA, V213, P175, DOI 10.1007/s004250000497 Britto DT, 2008, PHYSIOL PLANTARUM, V133, P637, DOI 10.1111/j.1399-3054.2008.01067.x Britto DT, 2006, J CROP IMPROVEMENT, V15, P1, DOI 10.1300/J411v15n02_01 Britto DT, 2003, PLANT CELL ENVIRON, V26, P183, DOI 10.1046/j.1365-3040.2003.00992.x Britto DT, 2001, NEW PHYTOL, V150, P37, DOI 10.1046/j.1469-8137.2001.00080.x Britto DT, 2006, TRENDS PLANT SCI, V11, P529, DOI 10.1016/j.tplants.2006.09.011 Cerezo M, 2001, PLANT PHYSIOL, V127, P262, DOI 10.1104/pp.127.1.262 Chen HYH, 2013, CRIT REV PLANT SCI, V32, P151, DOI 10.1080/07352689.2012.734742 Cheong YH, 2007, PLANT J, V52, P223, DOI 10.1111/j.1365-313X.2007.03236.x Chopin F, 2007, PLANT PHYSIOL BIOCH, V45, P630, DOI 10.1016/j.plaphy.2007.04.007 CLARKSON DT, 1968, NATURE, V220, P805, DOI 10.1038/220805a0 Clarkson D. T., 1988, Solute transport in plant cells and tissues., P251 CLARKSON DT, 1993, PHILOS T ROY SOC B, V341, P5, DOI 10.1098/rstb.1993.0086 CLEMENT CR, 1974, J EXP BOT, V25, P81, DOI 10.1093/jxb/25.1.81 Colmer TD, 1998, PLANT CELL ENVIRON, V21, P240, DOI 10.1046/j.1365-3040.1998.00261.x Cornish-Bowden A, 2004, CINETIQUE ENZYMATIQU, P55 Crawford NM, 1998, TRENDS PLANT SCI, V3, P389, DOI 10.1016/S1360-1385(98)01311-9 CUSHMAN JH, 1984, PLANT SOIL, V79, P123, DOI 10.1007/BF02182149 Dainty J, 1969, PHYSL PLANT GROWTH D, P420 DAINTY JACK, 1963, ADVAN BOT RES, V1, P279, DOI 10.1016/S0065-2296(08)60183-4 De Jong F, 2013, PLANT PHYSIOL, V164, P308 De Angeli A, 2006, NATURE, V442, P939, DOI 10.1038/nature05013 DELHON P, 1995, J EXP BOT, V46, P1585, DOI 10.1093/jxb/46.10.1585 Delhon P, 1996, J EXP BOT, V47, P893, DOI 10.1093/jxb/47.7.893 DESIMONE JA, 1978, BIOCHIM BIOPHYS ACTA, V538, P120, DOI 10.1016/0304-4165(78)90256-8 Edwald R, 1973, BIOCH PHYSL PFLANZEN, V164, P596 EDWARDS JH, 1976, AGRON J, V68, P17 Eissenstat DM, 2005, ECOL STU AN, V181, P185 EPSTEIN E, 1963, P NATL ACAD SCI USA, V49, P684, DOI 10.1073/pnas.49.5.684 EPSTEIN E, 1966, NATURE, V212, P1324, DOI 10.1038/2121324a0 Epstein E, 1954, AM J BOT, V4, P785 Epstein E, 1972, MINERAL NUTR PLANTS, P69 EPSTEIN E, 1952, PLANT PHYSIOL, V27, P457, DOI 10.1104/pp.27.3.457 EPSTEIN E, 1953, NATURE, V171, P83, DOI 10.1038/171083a0 Eshel A, 1973, ION TRANSPORT PLANTS, P531 Faure-Rabasse S, 2002, J EXP BOT, V53, P1711, DOI 10.1093/jxb/erf023 Feng HM, 2011, J EXP BOT, V62, P2319, DOI 10.1093/jxb/erq403 Filleur S, 2001, FEBS LETT, V489, P220, DOI 10.1016/S0014-5793(01)02096-8 FISCUS EL, 1975, P NATL ACAD SCI USA, V72, P3114, DOI 10.1073/pnas.72.8.3114 Forde BG, 1999, ADV BOT RES, V30, P1 Gabrielle B, 1998, 16 INT SOC SOIL SCI, P1 Gao SY, 1998, AGRON J, V90, P505 Garnett T, 2013, NEW PHYTOL, V198, P82, DOI 10.1111/nph.12166 GARRAHAN PJ, 1967, J PHYSIOL-LONDON, V192, P175 Gastal F, 2002, J EXP BOT, V53, P789, DOI 10.1093/jexbot/53.370.789 Gilliham M, 2005, PLANT PHYSIOL, V137, P819, DOI 10.1104/pp.104.054056 Girin T, 2007, PLANT CELL ENVIRON, V30, P1366, DOI 10.1111/j.1365-3040.2007.01712.x Glass AD, 2005, ECOL STU AN, V181, P117 Glass ADM, 2013, PLANT PHYSIOL, V163, P1103, DOI 10.1104/pp.113.229161 Glass A. D. M., 2007, P87, DOI 10.1007/978-1-4020-5843-1_6 Glass ADM, 2003, CRIT REV PLANT SCI, V22, P453, DOI 10.1080/07352680390243512 Goring H, 1976, WISSENSCHAFTL Z HUMB, V25, P61 Guo FQ, 2001, PLANT CELL, V13, P1761, DOI 10.1105/tpc.13.8.1761 Guo FQ, 2002, J EXP BOT, V53, P835, DOI 10.1093/jexbot/53.370.835 Herdel K, 2001, PLANT CELL ENVIRON, V24, P41, DOI 10.1046/j.1365-3040.2001.00655.x HILL CM, 1977, MOL CELL BIOCHEM, V15, P173, DOI 10.1007/BF01734107 Ho CH, 2009, CELL, V138, P1184, DOI 10.1016/j.cell.2009.07.004 Hu HC, 2009, PLANT J, V57, P264, DOI 10.1111/j.1365-313X.2008.03685.x Huang NC, 1996, PLANT CELL, V8, P2183 Huang NC, 1999, PLANT CELL, V11, P1381, DOI 10.1105/tpc.11.8.1381 Jeschke WD, 1973, ION TRANSPORT PLANTS, P285 KANNAN S, 1971, SCIENCE, V173, P927, DOI 10.1126/science.173.4000.927 KOCHIAN LV, 1982, PLANT PHYSIOL, V70, P1723, DOI 10.1104/pp.70.6.1723 KOCHIAN LV, 1985, PLANT PHYSIOL, V79, P771, DOI 10.1104/pp.79.3.771 Kohler B, 2002, PLANT J, V30, P133, DOI 10.1046/j.1365-313X.2002.01269.x Kohler B, 2000, PLANT PHYSIOL, V122, P243, DOI 10.1104/pp.122.1.243 KRONZUCKER HJ, 1995, PLANT PHYSIOL, V109, P319 KRONZUCKER HJ, 1995, PLANTA, V196, P674, DOI 10.1007/BF01106760 Krouk G, 2006, PLANT PHYSIOL, V142, P1075, DOI 10.1104/pp.106.087510 LAINE P, 1994, NEW PHYTOL, V127, P675, DOI 10.1111/j.1469-8137.1994.tb02970.x LAZOF DB, 1992, PLANT PHYSIOL, V100, P1251, DOI 10.1104/pp.100.3.1251 Le Deunff E, 2014, ANN BOT, V113, P931 Le Ny F, 2013, PLANT SIGNALING BEHA, V8 Leblanc Antonin, 2013, Plant Signal Behav, V8, pe22904, DOI 10.4161/psb.22904 Le Bot J, 1998, SCI HORTIC-AMSTERDAM, V74, P47, DOI 10.1016/S0304-4238(98)00082-X LEBOT J, 1992, J PLANT NUTR, V15, P247 LEE RB, 1986, J EXP BOT, V37, P1768, DOI 10.1093/jxb/37.12.1768 Lejay L, 2003, PLANT CELL, V15, P2218, DOI 10.1105/tpc.013516 Lejay L, 1999, PLANT J, V18, P509, DOI 10.1046/j.1365-313X.1999.00480.x Lejay L, 2008, PLANT PHYSIOL, V146, P2036, DOI 10.1104/pp.107.114710 Lemaire L, 2013, J EXP BOT, V64, P2725, DOI 10.1093/jxb/ert124 Leran S, 2013, TRENDS PLANT SCI, V19, P5, DOI DOI 10.1016/J.TPLANTS.2013.08.008 Li JY, 2010, PLANT CELL, V22, P1633, DOI 10.1105/tpc.110.075242 Li WB, 2007, PLANT PHYSIOL, V143, P425, DOI 10.1104/pp.106.091223 Lin SH, 2008, PLANT CELL, V20, P2514, DOI 10.1105/tpc.108.060244 Liu KH, 2003, EMBO J, V22, P1005, DOI 10.1093/emboj/cdg118 Liu KH, 1999, PLANT CELL, V11, P865, DOI 10.1105/tpc.11.5.865 Maathuis FJM, 2009, CURR OPIN PLANT BIOL, V12, P250, DOI 10.1016/j.pbi.2009.04.003 MacDuff JH, 1997, J EXPT BOT, V113, P2297 Malagoli P, 2008, QUANTIFYING UNDERSTA, P47 Malagoli P, 2014, ANN BOT, V113, P939 Matt P, 2001, PLANT CELL ENVIRON, V24, P177, DOI 10.1046/j.1365-3040.2001.00676.x Maurel C, 2007, FEBS LETT, V581, P2227, DOI 10.1016/j.febslet.2007.03.021 Miller AJ, 2007, J EXP BOT, V58, P2297, DOI 10.1093/jxb/erm066 Monachello D, 2009, NEW PHYTOL, V183, P88, DOI 10.1111/j.1469-8137.2009.02837.x Nazoa P, 2003, PLANT MOL BIOL, V52, P689, DOI 10.1023/A:1024899808018 Neame KD, 1972, ELEMENTARY KINETICS, P16 Okamoto M, 2003, PLANT CELL PHYSIOL, V44, P304, DOI 10.1093/pcp/pcg036 Okamoto M, 2006, PLANT PHYSIOL, V140, P1036, DOI 10.1104/pp.105.074385 Orsel M, 2004, PLANTA, V219, P714, DOI 10.1007/s00425-004-1266-x Orsel Mathilde, 2007, Plant Signal Behav, V2, P260, DOI 10.4161/psb.2.4.3870 Orsel M, 2002, PLANT PHYSIOL, V129, P886, DOI 10.1104/pp.005280 Parker JL, 2014, NATURE, V507, P68, DOI 10.1038/nature13116 PETERSEN CT, 1995, EUR J AGRON, V4, P77 PEUKE AD, 1996, PROG BOT, V57, P93 Pitman M. G., 1976, Transport and Transfer Processes in Plants (Wardlaw, I.F.; Passioura, J.B., Editors). Proceedings of a Symposium, US-Australia Agreement for Scientific and Technical Cooperation, Canberra, Australia, 1975., P85 PITMAN MG, 1977, ANNU REV PLANT PHYS, V28, P71, DOI 10.1146/annurev.pp.28.060177.000443 Reisenauer HM, 1966, ENV BIOL, P507 Remans T, 2006, P NATL ACAD SCI USA, V103, P19206, DOI 10.1073/pnas.0605275103 Remans T, 2006, PLANT PHYSIOL, V140, P909, DOI 10.1104/pp.105.075721 Robinson D, 2005, ECOL STU AN, V181, P43 Roose T, 2004, J THEOR BIOL, V228, P173, DOI 10.1016/j.jtbi.2003.12.013 Sadras VO, 2014, FIELD CROP RES, V164, P54, DOI 10.1016/j.fcr.2014.05.006 Schachter H, 1972, METABOLIC TRANSPORT, P1 Segonzac C, 2011, PLANT CELL, V19, P3760 SIDDIQI MY, 1989, PLANT PHYSIOL, V90, P806, DOI 10.1104/pp.90.3.806 SIDDIQI MY, 1990, PLANT PHYSIOL, V93, P1426, DOI 10.1104/pp.93.4.1426 Sorgona A, 2011, PLANT CELL ENVIRON, V34, P1127, DOI 10.1111/j.1365-3040.2011.02311.x Stein WD, 1967, MOVEMENT MOL CELL ME, P361 Steudle E, 2000, J EXP BOT, V51, P1531, DOI 10.1093/jexbot/51.350.1531 Steudle E, 2000, PLANT SOIL, V226, P45, DOI 10.1023/A:1026439226716 Sun J, 2014, NATURE, V507, P73, DOI 10.1038/nature13074 Szczerba MW, 2006, J EXP BOT, V57, P3293, DOI 10.1093/jxb/erl088 Taylor AR, 1998, PLANT CELL ENVIRON, V21, P1255, DOI 10.1046/j.1365-3040.1998.00357.x Thellier M, 2012, PROGR BOT, V73, P57 Thellier M, 1973, ION TRANSPORT PLANTS, P47 THELLIER M, 1970, ANN BOT-LONDON, V34, P983 THELLIER M, 1971, J THEOR BIOL, V31, P389, DOI 10.1016/0022-5193(71)90017-8 Thellieri M., 2009, V70, P53, DOI 10.1007/978-3-540-68421-3_3 Tinker PB, 2000, SOLUTES MOVEMENT RHI, P95 TORII K, 1966, PLANT PHYSIOL, V41, P863, DOI 10.1104/pp.41.5.863 Touraine B, 1997, PLANT PHYSIOL, V114, P137, DOI 10.1104/pp.114.1.137 Touraine B, 2001, PLANT NITROGEN, P1 TSAY YF, 1993, CELL, V72, P705, DOI 10.1016/0092-8674(93)90399-B VINCENT JC, 1983, BIOPHYS J, V41, P23 VINCENT JC, 1988, ARCH BIOCHEM BIOPHYS, V261, P405, DOI 10.1016/0003-9861(88)90356-6 VINCENT JC, 1988, BIOELECTROCH BIOENER, V20, P215, DOI 10.1016/S0302-4598(98)80018-4 Walker NA, 1976, ENCYCLOPEDIA PLANT P, P93 WARNCKE DD, 1974, AGRON J, V66, P514 WELCH RM, 1968, P NATL ACAD SCI USA, V61, P447, DOI 10.1073/pnas.61.2.447 Wolt JD, 1994, SOIL SOLUTION CHEM A, P345 Xu J, 2006, CELL, V125, P1347, DOI 10.1016/j.cell.2006.06.011 Zhuo DG, 1999, PLANT J, V17, P563, DOI 10.1046/j.1365-313X.1999.00396.xLe Deunff, Erwan Malagoli, PhilippeOxford univ pressOxfordBackground The top-down analysis of nitrate influx isotherms through the Enzyme-Substrate interpretation has not withstood recent molecular and histochemical analyses of nitrate transporters. Indeed, at least four families of nitrate transporters operating at both high and/or low external nitrate concentrations, and which are located in series and/or parallel in the different cellular layers of the mature root, are involved in nitrate uptake. Accordingly, the top-down analysis of the root catalytic structure for ion transport from the Enzyme-Substrate interpretation of nitrate influx isotherms is inadequate. Moreover, the use of the Enzyme-Substrate velocity equation as a single reference in agronomic models is not suitable in its formalism to account for variations in N uptake under fluctuating environmental conditions. Therefore, a conceptual paradigm shift is required to improve the mechanistic modelling of N uptake in agronomic models. Scope An alternative formalism, the Flow-Force theory, was proposed in the 1970s to describe ion isotherms based upon biophysical 'flows and forces' relationships of non-equilibrium thermodynamics. This interpretation describes, with macroscopic parameters, the patterns of N uptake provided by a biological system such as roots. In contrast to the Enzyme-Substrate interpretation, this approach does not claim to represent molecular characteristics. Here it is shown that it is possible to combine the Flow-Force formalism with polynomial responses of nitrate influx rate induced by climatic and in planta factors in relation to nitrate availability. Conclusions Application of the Flow-Force formalism allows nitrate uptake to be modelled in a more realistic manner, and allows scaling-up in time and space of the regulation of nitrate uptake across the plant growth cycle

    Modelling of nitrogen uptake based on a cross-combination of Flow-force interpretation of nitrate uptake isotherm and environmental and in planta regulation of nitrate influx rate

    No full text
    National audienceA mechanistic structural–functional model was developed to predict nitrogen uptake throughout the growth cycle by a crop of winter oilseed rape (Brassicanapus) grown under field conditions. The functional component of the model (nitrate uptake activity) derives from a revisited conceptual framework that combines the thermodynamic Flow–Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. The Flow-Force theory was proposed in the seventies to describe ion isotherms based upon biophysical “flows and forces” relationships of non-equilibrium thermodynamics. This perspective appears more realistic for describing root N uptake at kinetic and molecular levels than the carrier viewpoint of Enzyme-Substrate interpretation. Indeed, the Enzyme-substrate interpretation has not withstood recent molecular analyses about nitrate transporters. At least four families of nitrate transporters operating at both high and/or low external nitrate concentrations and located in series and/or parallel in the different cellular layers of the mature root are involved in nitrate uptake. Likewise, the demonstration was made that Vmax and Km parameters deduced from influx isotherms are only “apparent” parameters representative of the overall behaviour of the root sample studied for the absorption process. Estimation of structural component of the model (root biomass) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentrations. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root. This conceptual framework provides a model of nitrate uptake that is able to respond in a more realistic manner to external nitrate fluctuations and to changes of climatic and in planta factors throughout the plant growth cycle at both functional and structural levels

    An updated model for nitrate uptake modelling in plants. II. Assessment of active root involvement in nitrate uptake based on integrated root system age: measured versus modelled outputs

    Get PDF
    Ann. Bot.ISI Document Delivery No.: AG9XJTimes Cited: 1Cited Reference Count: 96Cited References: Le Bot J, 1998, SCI HORTIC-AMSTERDAM, V74, P47, DOI 10.1016/S0304-4238(98)00082-X Ahuja LR, 2008, QUANTIFYING UNDERSTA, P1 Albert B., 2008, ARCHITECTURE RACINAI AYADI A, 1974, ANN BOT-LONDON, V38, P677 Barber SA, 1995, SOIL NUTR BIOAVAILAB, P49 Barraclough PB., 1989, ASPECTS APPL BIOL, V22, P227 BARRACLOUGH PB, 1989, PLANT SOIL, V119, P59, DOI 10.1007/BF02370269 Beuve N, 2004, PLANT CELL ENVIRON, V27, P1035, DOI 10.1111/j.1365-3040.2004.01208.x Beyschlag W, 2012, PROGR BOT, P57 BHAT KKS, 1979, PLANT SOIL, V53, P137, DOI 10.1007/BF02181888 Bouma TJ, 2001, NEW PHYTOL, V150, P685, DOI 10.1046/j.1469-8137.2001.00128.x Brouder SM, 2008, PHYSIOL PLANTARUM, V133, P705, DOI 10.1111/j.1399-3054.2008.01136.x Chen HYH, 2013, CRIT REV PLANT SCI, V32, P151, DOI 10.1080/07352689.2012.734742 Clarkson D. T., 1988, Solute transport in plant cells and tissues., P251 CLARKSON DT, 1968, NATURE, V220, P805, DOI 10.1038/220805a0 CLARKSON DT, 1993, PHILOS T ROY SOC B, V341, P5, DOI 10.1098/rstb.1993.0086 Colmer TD, 1998, PLANT CELL ENVIRON, V21, P240, DOI 10.1046/j.1365-3040.1998.00261.x Crawford NM, 1998, TRENDS PLANT SCI, V3, P389, DOI 10.1016/S1360-1385(98)01311-9 CUSHMAN JH, 1984, PLANT SOIL, V79, P123, DOI 10.1007/BF02182149 De Kroon H, 2009, PLANT CELL ENVIRON, V32, P704, DOI 10.1111/j.1365-3040.2009.01936.x Delhon P, 1996, J EXP BOT, V47, P893, DOI 10.1093/jxb/47.7.893 DELHON P, 1995, J EXP BOT, V46, P1585, DOI 10.1093/jxb/46.10.1585 DREW MC, 1975, J EXP BOT, V26, P79, DOI 10.1093/jxb/26.1.79 DREW MC, 1975, NEW PHYTOL, V75, P479, DOI 10.1111/j.1469-8137.1975.tb01409.x EDWARDS JH, 1976, AGRON J, V68, P17 Eissenstat DM, 2005, ECOL STU AN, V181, P185 Epstein E., 1972, MINERAL NUTR PLANTS, P69 Epstein E, 1954, AM J BOT, V4, P785 EPSTEIN E, 1966, NATURE, V212, P1324, DOI 10.1038/2121324a0 Feng HM, 2011, J EXP BOT, V62, P2319, DOI 10.1093/jxb/erq403 Filleur S, 2001, FEBS LETT, V489, P220, DOI 10.1016/S0014-5793(01)02096-8 Forde BG, 1999, ADV BOT RES, V30, P1 Gabrielle B, 1998, P 16 WORLD C SOIL SC Gabrielle B, 1998, FIELD CROP RES, V57, P95, DOI 10.1016/S0378-4290(97)00120-2 Gan YT, 2011, CROP PASTURE SCI, V62, P457, DOI 10.1071/CP10406 Gao SY, 1998, AGRON J, V90, P505 Garnett T, 2013, NEW PHYTOL, V198, P82, DOI 10.1111/nph.12166 Gerwitz S, 1974, J APPL ECOL, V11, P773 Girin T, 2007, PLANT CELL ENVIRON, V30, P1366, DOI 10.1111/j.1365-3040.2007.01712.x Glass A. D. M., 2007, P87, DOI 10.1007/978-1-4020-5843-1_6 Good AG, 2004, TRENDS PLANT SCI, V9, P597, DOI 10.1016/j.tplants.2004.10.008 Gosse G, 1999, AGRONOMIE, V19, P119, DOI 10.1051/agro:19990204 Gregory PJ, 2011, J EXP BOT, V62, P5233, DOI 10.1093/jxb/err232 Guo FQ, 2002, J EXP BOT, V53, P835, DOI 10.1093/jexbot/53.370.835 HANSEN GK, 1980, PHYSIOL PLANTARUM, V48, P421, DOI 10.1111/j.1399-3054.1980.tb03279.x Herder GD, 2010, TRENDS PLANT SCI, V15, P600, DOI [10.1016/j.tplants.2010.08.009, DOI 10.1016/J.TPLANTS.2010.08.009] Ho CH, 2009, CELL, V138, P1184, DOI 10.1016/j.cell.2009.07.004 Hu HC, 2009, PLANT J, V57, P264, DOI 10.1111/j.1365-313X.2008.03685.x Kage H, 2000, PLANT SOIL, V223, P131, DOI 10.1023/A:1026574828169 King J, 2003, ANN BOT-LONDON, V91, P383, DOI 10.1093/aob/mcg033 KRONZUCKER HJ, 1995, PLANT PHYSIOL, V109, P319 LAZOF DB, 1992, PLANT PHYSIOL, V100, P1251, DOI 10.1104/pp.100.3.1251 Le Bot J, 1992, J PLANT NUTR, V15, P257 Le Deunff E, 2014, ANN BOT-LONDON, V113, P991, DOI 10.1093/aob/mcu021 Le Ny F, 2013, PLANT SIGNALING BEHA, V8 Leblanc Antonin, 2013, Plant Signal Behav, V8, pe22904, DOI 10.4161/psb.22904 Lejay L, 2003, PLANT CELL, V15, P2218, DOI 10.1105/tpc.013516 Lejay L, 1999, PLANT J, V18, P509, DOI 10.1046/j.1365-313X.1999.00480.x Lejay L, 2008, PLANT PHYSIOL, V146, P2036, DOI 10.1104/pp.107.114710 Li WB, 2007, PLANT PHYSIOL, V143, P425, DOI 10.1104/pp.106.091223 Liu KH, 2003, EMBO J, V22, P1005, DOI 10.1093/emboj/cdg118 Liu LP, 2011, FIELD CROP RES, V122, P248, DOI 10.1016/j.fcr.2011.04.003 Liu LP, 2010, CROP SCI, V50, P222, DOI 10.2135/cropsci2009.03.0156 Liu LP, 2011, FIELD CROP RES, V122, P256, DOI 10.1016/j.fcr.2011.04.002 Lynch JP, 2007, AUST J BOT, V55, P493, DOI 10.1071/BT06118 Macduff JH, 1997, J EXP BOT, V48, P1691, DOI 10.1093/jexbot/48.314.1691 Maertens C., 1987, MINIRHIZOTRON OBSERV Malagoli P, 2004, PLANT PHYSIOL, V134, P388, DOI 10.1104/pp.103.029538 Miller AJ, 2007, J EXP BOT, V58, P2297, DOI 10.1093/jxb/erm066 Monachello D, 2009, NEW PHYTOL, V183, P88, DOI 10.1111/j.1469-8137.2009.02837.x Nazoa P, 2003, PLANT MOL BIOL, V52, P689, DOI 10.1023/A:1024899808018 NETZER MH, 1989, AGRONOMIE, V9, P151, DOI 10.1051/agro:19890205 NEWMAN EI, 1966, J APPL ECOL, V3, P139, DOI 10.2307/2401670 Okamoto M, 2003, PLANT CELL PHYSIOL, V44, P304, DOI 10.1093/pcp/pcg036 Ourry A, 2008, QUANTIFYING UNDERSTA, P47 PETERSEN CT, 1995, EUR J AGRON, V4, P77 PEUKE AD, 1996, PROG BOT, V57, P93 Remans T, 2006, PLANT PHYSIOL, V140, P909, DOI 10.1104/pp.105.075721 Robinson D., 2005, NUTR ACQUISITION PLA, P45 Robinson D, 1996, PLANT SOIL, V187, P57, DOI 10.1007/BF00011657 Scheible WR, 1997, PLANT J, V11, P671, DOI 10.1046/j.1365-313X.1997.11040671.x Segonzac C, 2011, PLANT CELL, V19, P3760 SIDDIQI MY, 1990, PLANT PHYSIOL, V93, P1426, DOI 10.1104/pp.93.4.1426 Sorgona A, 2011, PLANT CELL ENVIRON, V34, P1127, DOI 10.1111/j.1365-3040.2011.02311.x Stitt M, 1998, PLANT SOIL, V201, P259, DOI 10.1023/A:1004305106426 Thellieri M., 2009, V70, P53, DOI 10.1007/978-3-540-68421-3_3 Thellier M., 1973, ION TRANSPORT PLANTS, P47 THELLIER M, 1971, J THEOR BIOL, V31, P389, DOI 10.1016/0022-5193(71)90017-8 THELLIER M, 1970, ANN BOT-LONDON, V34, P983 Tinker PB, 2000, SOLUTES MOVEMENT RHI, P308 Touraine B, 2001, PLANT NITROGEN, P1 Vidmar JJ, 2000, PLANT PHYSIOL, V123, P307, DOI 10.1104/pp.123.1.307 WARNCKE DD, 1974, AGRON J, V66, P514 Xu J, 2006, CELL, V125, P1347, DOI 10.1016/j.cell.2006.06.011 YANAI RD, 1994, SOIL SCI SOC AM J, V58, P1562 Zhang HM, 1999, P NATL ACAD SCI USA, V96, P6529, DOI 10.1073/pnas.96.11.6529Malagoli, Philippe Le Deunff, ErwanRegional Council of Basse-NormandieThis work was supported by the Regional Council of Basse-Normandie. We thank Prof. Eric Reyssat (Laboratoire de Mathematiques N. Oresmes, Universite de Caen, France) for his assistance with the mathematics used in the model.Oxford univ pressOxfordAn updated version of a mechanistic structural-functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions. The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow-Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root. Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0-30 and 30-60 cm) contained 75-88 % of the total root length and biomass, and accounted for 90-95 % of N taken up at harvest. This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels

    An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow-force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx

    Get PDF
    Ann. Bot.ISI Document Delivery No.: AG9XJTimes Cited: 1Cited Reference Count: 98Cited References: Le Bot J, 1998, SCI HORTIC-AMSTERDAM, V74, P47, DOI 10.1016/S0304-4238(98)00082-X Ahuja LR, 2008, QUANTIFYING UNDERSTA, P1 Baker D. A., 1988, Solute transport in plant cells and tissues., P1 Barber SA, 1995, SOIL NUTR BIOAVAILAB, P110 Barraclough PB, 1989, PLANT SOIL, V11, P959 Beuve N, 2004, PLANT CELL ENVIRON, V27, P1035, DOI 10.1111/j.1365-3040.2004.01208.x Beyschlag W, 2012, PROGR BOT, P57 BHAT KKS, 1979, PLANT SOIL, V53, P137, DOI 10.1007/BF02181888 Biondini M, 2008, J THEOR BIOL, V251, P35, DOI 10.1016/j.jtbi.2007.11.018 Chen HYH, 2013, CRIT REV PLANT SCI, V32, P151, DOI 10.1080/07352689.2012.734742 Chopin F, 2007, PLANT PHYSIOL BIOCH, V45, P630, DOI 10.1016/j.plaphy.2007.04.007 Colnenne C, 1998, ANN BOT-LONDON, V81, P311, DOI 10.1006/anbo.1997.0557 Coskun D, 2013, PLANT PHYSIOL, V162, P496, DOI 10.1104/pp.113.215913 Crawford NM, 1998, TRENDS PLANT SCI, V3, P389, DOI 10.1016/S1360-1385(98)01311-9 Dainty J., 1969, PHYSL PLANT GROWTH D, P420 DAINTY JACK, 1963, ADVAN BOT RES, V1, P279, DOI 10.1016/S0065-2296(08)60183-4 De Angeli A, 2009, J BIOL CHEM, V284, P26526, DOI 10.1074/jbc.M109.005132 De Angeli A, 2006, NATURE, V442, P939, DOI 10.1038/nature05013 DELHON P, 1995, J EXP BOT, V46, P1595, DOI 10.1093/jxb/46.10.1595 Devienne-Barret F, 2000, ANN BOT-LONDON, V86, P995, DOI 10.1006/anbo.2000.1264 DUCKETT CM, 1994, DEVELOPMENT, V120, P3247 Eissenstat DM, 2005, ECOL STU AN, V181, P185 Epstein E., 1972, MINERAL NUTR PLANTS, P69 EPSTEIN E, 1953, NATURE, V171, P83, DOI 10.1038/171083a0 EPSTEIN E, 1952, PLANT PHYSIOL, V27, P457, DOI 10.1104/pp.27.3.457 EPSTEIN E, 1963, P NATL ACAD SCI USA, V49, P684, DOI 10.1073/pnas.49.5.684 EPSTEIN E, 1966, NATURE, V212, P1324, DOI 10.1038/2121324a0 Eshel A, 1973, ION TRANSPORT PLANTS, P531 Faure-Rabasse S, 2002, J EXP BOT, V53, P1711, DOI 10.1093/jxb/erf023 Feng HM, 2011, J EXP BOT, V62, P2319, DOI 10.1093/jxb/erq403 Filleur S, 2001, FEBS LETT, V489, P220, DOI 10.1016/S0014-5793(01)02096-8 FISCUS EL, 1975, P NATL ACAD SCI USA, V72, P3114, DOI 10.1073/pnas.72.8.3114 Forde BG, 1999, ADV BOT RES, V30, P1 Gao SY, 1998, AGRON J, V90, P505 Garnett T, 2009, PLANT CELL ENVIRON, V32, P1272, DOI 10.1111/j.1365-3040.2009.02011.x Geelen D, 2000, PLANT J, V21, P259, DOI 10.1046/j.1365-313x.2000.00680.x Girin T, 2007, PLANT CELL ENVIRON, V30, P1366, DOI 10.1111/j.1365-3040.2007.01712.x GLASS ADM, 1992, PLANT PHYSIOL, V99, P456, DOI 10.1104/pp.99.2.456 Good AG, 2004, TRENDS PLANT SCI, V9, P597, DOI 10.1016/j.tplants.2004.10.008 Gosse G, 1999, AGRONOMIE, V19, P119, DOI 10.1051/agro:19990204 Gregory PJ, 2011, J EXP BOT, V62, P5233, DOI 10.1093/jxb/err232 Guo FQ, 2002, J EXP BOT, V53, P835, DOI 10.1093/jexbot/53.370.835 Guo FQ, 2001, PLANT CELL, V13, P1761, DOI 10.1105/tpc.13.8.1761 HANSEN GK, 1980, PHYSIOL PLANTARUM, V48, P421, DOI 10.1111/j.1399-3054.1980.tb03279.x Ho CH, 2009, CELL, V138, P1184, DOI 10.1016/j.cell.2009.07.004 Hu HC, 2009, PLANT J, V57, P264, DOI 10.1111/j.1365-313X.2008.03685.x Jeuffroy MH, 1999, EUR J AGRON, V10, P129, DOI 10.1016/S1161-0301(98)00059-8 Kohler B, 2002, PLANT J, V30, P133, DOI 10.1046/j.1365-313X.2002.01269.x Kramer PJ, 1983, WATER RELATIONS PLAN, P215 KRONZUCKER HJ, 1995, PLANTA, V196, P674, DOI 10.1007/BF01106760 KRONZUCKER HJ, 1995, PLANT PHYSIOL, V109, P319 Krouk G, 2006, PLANT PHYSIOL, V142, P1075, DOI 10.1104/pp.106.087510 LAINE P, 1995, PLANTA, V196, P77 LAINE P, 1994, NEW PHYTOL, V127, P675, DOI 10.1111/j.1469-8137.1994.tb02970.x Laurent F, 1992, ASPECTS APPL BIOL, V30, P45 Le Ny F, 2013, PLANT SIGNALING BEHA, V8 Leblanc Antonin, 2013, Plant Signal Behav, V8, pe22904, DOI 10.4161/psb.22904 Leblanc E, 2008, PLANT PHYSIOL, V146, P1928 Lemaire L, 2013, J EXPT BOT, V64, P2725 Leran S, 2013, MOL PLANT, V6, P1984, DOI 10.1093/mp/sst068 Li JY, 2010, PLANT CELL, V22, P1633, DOI 10.1105/tpc.110.075242 Li WB, 2007, PLANT PHYSIOL, V143, P425, DOI 10.1104/pp.106.091223 Lin SH, 2008, PLANT CELL, V20, P2514, DOI 10.1105/tpc.108.060244 Liu KH, 2003, EMBO J, V22, P1005, DOI 10.1093/emboj/cdg118 Macduff JH, 2003, J EXP BOT, V54, P431, DOI 10.1093/jxb/erg058 Macduff JH, 1997, J EXP BOT, V48, P1691, DOI 10.1093/jexbot/48.314.1691 Malagoli P, 2014, ANN BOT-LONDON, V113, P1007, DOI 10.1093/aob/mcu022 Malagoli P, 2004, PLANT PHYSIOL, V134, P388, DOI 10.1104/pp.103.029538 Maurel C, 2007, FEBS LETT, V581, P2227, DOI 10.1016/j.febslet.2007.03.021 Monachello D, 2009, NEW PHYTOL, V183, P88, DOI 10.1111/j.1469-8137.2009.02837.x Nazoa P, 2003, PLANT MOL BIOL, V52, P689, DOI 10.1023/A:1024899808018 Nikolic M, 2012, BMC PLANT BIOL, V12, DOI 10.1186/1471-2229-12-66 Okamoto M, 2003, PLANT CELL PHYSIOL, V44, P304, DOI 10.1093/pcp/pcg036 Orsel Mathilde, 2007, Plant Signal Behav, V2, P260, DOI 10.4161/psb.2.4.3870 Ourry A, 2008, QUANTIFYING UNDERSTA, P47 Pearson CJ, 1977, PLANTA, V137, P102 Remans T, 2006, PLANT PHYSIOL, V140, P909, DOI 10.1104/pp.105.075721 Remans T, 2006, P NATL ACAD SCI USA, V103, P19206, DOI 10.1073/pnas.0605275103 Roose T, 2004, J THEOR BIOL, V228, P173, DOI 10.1016/j.jtbi.2003.12.013 Segonzac C, 2011, PLANT CELL, V19, P3760 SIDDIQI MY, 1989, PLANT PHYSIOL, V90, P806, DOI 10.1104/pp.90.3.806 SIDDIQI MY, 1990, PLANT PHYSIOL, V93, P1426, DOI 10.1104/pp.93.4.1426 Sorgona A, 2011, PLANT CELL ENVIRON, V34, P1127, DOI 10.1111/j.1365-3040.2011.02311.x STEINGROVER E, 1986, PHYSIOL PLANTARUM, V66, P550, DOI 10.1111/j.1399-3054.1986.tb05965.x Steudle E, 2000, PLANT SOIL, V226, P45, DOI 10.1023/A:1026439226716 Steudle E, 2000, J EXP BOT, V51, P1531, DOI 10.1093/jexbot/51.350.1531 Thellieri M., 2009, V70, P53, DOI 10.1007/978-3-540-68421-3_3 Thellier M., 1973, ION TRANSPORT PLANTS, P47 THELLIER M, 1971, J THEOR BIOL, V31, P389, DOI 10.1016/0022-5193(71)90017-8 THELLIER M, 1970, ANN BOT-LONDON, V34, P983 Tilmann D., 1999, P NATL ACAD SCI USA, V99, P5595 Tinker PB, 2000, SOLUTES MOVEMENT RHI, P308 TORII K, 1966, PLANT PHYSIOL, V41, P863, DOI 10.1104/pp.41.5.863 Touraine B, 2001, PLANT NITROGEN, P1 von der Fecht-Bartenbach J, 2010, PLANT CELL PHYSIOL, V51, P960, DOI 10.1093/pcp/pcq062 Wang RC, 2009, PLANT PHYSIOL, V151, P472, DOI 10.1104/pp.109.140434 Zhu T, 1998, PROTOPLASMA, V204, P84, DOI 10.1007/BF01282296 Zhu T, 1998, PROTOPLASMA, V203, P35, DOI 10.1007/BF01280585Le Deunff, Erwan Malagoli, PhilippeOxford univ pressOxfordIn spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales. A cross-combination of a Flow-Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to 'Enzyme-Substrate' interpretations, a Flow-Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint. Use of a Flow-Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure-function mechanistic model of N uptake
    • …
    corecore