58 research outputs found

    Synthesis, characterization and application of ZnO nanomaterials

    Get PDF
    In this thesis, high temperature vapor deposition method has been extensively used to synthesize nanomaterials. One of the as-synthesized nanostructures is superlattice-structured nanohelix, which is made of two types of alternating and periodically distributed long crystal strips. The manipulation of the nanohelix showed super-elasticity and special fracture mechanism. The other widely studied nanomaterial is vertically aligned ZnO nanowire array, which is epitaxially grown on GaN and SiC substrates. Several manipulation methods such as e-beam lithography (EBL), dielectrophoresis, and in situ direct manipulation, have been developed, so that the mechanical and electrical properties of a single nanowire can be characterized, which provide essential references for fabricating bridged nanowire based devices. Specifically, an improved atomic force microscope (AFM) based method has been developed to accurately measure the elastic modulus of bridged ZnO nanowires. Bridged nanostructure is an extremely important configuration in planar MEMS/NEMS devices and this new approach provides insights to the importance of boundary conditions. Novel physical and statistical models have been firstly developed to obtain better estimate of elastic modulus. For electrical properties of bridged nanowires, it is found that the direct contact of ZnO nanowire and Au electrodes displays a back-to-back Schottky behavior. Self-assembled monolayer (SAM) can improve the mechanical contact and increase the conductance. These devices with Schottky contacts show much better UV sensing performance than the ones with Ohmic contacts. Barrier height change is believed to play an important role in a lot of sensors. A thermionic emission-diffusion model is deduced to successfully explain the current change in a strain sensor. This thesis clearly exhibits the unique properties of ZnO nanomaterials and provides deeper understanding to methodologies as well as the phenomena. With further exploration, ZnO nanomaterials should be able to better understood and utilized, and come close to the next step of commercialization.Ph.D.Committee Chair: Wang, Zhong Lin; Committee Member: Gall, Kenneth A.; Committee Member: Snyder, Robert L.; Committee Member: Wong, Ching-Ping; Committee Member: Wu, C.F. Jef

    Flexible Piezotronic Strain Sensor

    Full text link

    Heteroatomic interface engineering of MOF-derived metal-embedded P- and N-codoped Zn node porous polyhedral carbon with enhanced sodium-ion storage

    Get PDF
    Amorphous-ordered mesoporous carbon materials are regarded as the most promising anode candidate for sodium-ion batteries (SIBs) owing to their eco-friendliness, abundance, thermal stability, and low price. However, poor rate, low initial Coulombic efficiency, and poor cycling performance have been the major challenges of SIBs. Herein, we successfully constructed a robust phosphorus and nitrogen-codoped Zn node porous polyhedral carbon polyhedron (P-N-Zn-C). The as-prepared P-N-Zn-C anode delivers outstanding electrochemical performance and ultrahigh stability and has achieved a remarkable capacity of 460 mA h g-1 at 100 mA g-1, long-term cycling stability of up to 100 cycles, and an excellent rate performance even at a current density of up to 1000 mA g-1. The remarkable performance can be ascribed to the enlarged interlayer distances of carbon and the existence of Zn node, which facilitate the insertion-extraction of Na ions. The first-principles density functional theory calculations revealed that the presence of P, N, and Zn could reduce the band gaps between the valence and conduction bands and accelerate the electron transfer reaction rate. This study underscores the potential importance of heteroatom doping as an effective strategy for improving the performance of carbon electrode materials

    The Sulfur Microbial Diet and Risk of Colorectal Cancer by Molecular Subtypes and Intratumoral Microbial Species in Adult Men

    Get PDF
    INTRODUCTION: We recently described the sulfur microbial diet, a pattern of intake associated with increased gut sulfur-metabolizing bacteria and incidence of distal colorectal cancer (CRC). We assessed whether this risk differed by CRC molecular subtypes or presence of intratumoral microbes involved in CRC pathogenesis (Fusobacterium nucleatum and Bifidobacterium spp.). METHODS: We performed Cox proportional hazards modeling to examine the association between the sulfur microbial diet and incidence of overall and distal CRC by molecular and microbial subtype in the Health Professionals Follow-Up Study (1986-2012). RESULTS: We documented 1,264 incident CRC cases among 48,246 men, approximately 40% of whom had available tissue data. After accounting for multiple hypothesis testing, the relationship between the sulfur microbial diet and CRC incidence did not differ by subtype. However, there was a suggestion of an association by prostaglandin synthase 2 (PTGS2) status with a multivariable adjusted hazard ratio for highest vs lowest tertile of sulfur microbial diet scores of 1.31 (95% confidence interval: 0.99-1.74, Ptrend = 0.07, Pheterogeneity = 0.04) for PTGS2-high CRC. The association of the sulfur microbial diet with distal CRC seemed to differ by the presence of intratumoral Bifidobacterium spp. with an adjusted hazard ratio for highest vs lowest tertile of sulfur microbial diet scores of 1.65 (95% confidence interval: 1.14-2.39, Ptrend = 0.01, Pheterogeneity = 0.03) for Bifidobacterium-negative distal CRC. We observed no apparent heterogeneity by other tested molecular markers. DISCUSSION: Greater long-term adherence to the sulfur microbial diet could be associated with PTGS2-high and Bifidobacterium-negative distal CRC in men. Additional studies are needed to further characterize the role of gut microbial sulfur metabolism and CRC

    Iron-modulated nickel cobalt phosphide embedded in carbon to boost power density of hybrid sodiumā€“air battery

    Get PDF
    Nickel cobalt phosphide (NiCoP) is emerging as a potential electrocatalyst towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, its ORR/OER activities are sluggish. Here, we investigated the roles of iron dopants in the Fe-doped NiCoP (Feā€“NiCoP) in order to boost its ORR/OER kinetics. The density functional theory (DFT) calculations reveal that the Fe dopant effectively modulates the electron conductivity of NiCoP and reduces binding energies of the reaction intermediates towards rate-determining steps of ORR and OER. A binder-free 3D microflowers morphology of the Feā€“NiCoP embedded in the amorphous carbon layer (Feā€“NiCoP@C) catalyst on the nickel foam was prepared as the air cathode for the hybrid sodium-air battery (HSAB). The HSAB displays a discharge voltage of 2.74 V at 0.01 mA cmāˆ’2 with excellent round trip efficiency of 93.26 % at the 500th cycle and state-of-the-art power density of 621 mW gāˆ’1

    Dynamic reversible evolution of solid electrolyte interface in nonflammable triethyl phosphate electrolyte enabling safe and stable potassium-ion batteries

    Get PDF
    Potassium-ion batteries (PIBs) are a favorable alternative to lithium-ion batteries (LIBs) for the large-scale electrochemical storage devices because of the high natural abundance of potassium resources. However, conventional PIB electrodes usually exhibit low actual capacities and poor cyclic stability due to the large radius of potassium ions (1.39 ƅ). In addition, the high reactivity of potassium metal raises serious safety concerns. These characteristics seriously inhibit the practical use of PIB electrodes. Here, zinc phosphide composites are rationally designed as PIB anodes for operation in a nonflammable triethyl phosphate (TEP) electrolyte to solve the above-mentioned issues. The optimized zinc phosphide composite with 20 wt% zinc phosphate presents a high specific capacity (571.1Ā mA h gāˆ’1 at 0.1 A gāˆ’1) and excellent cycling performance (484.9Ā mA h gāˆ’1 with the capacity retention of 94.5% after 1000 cycles at 0.5 A gāˆ’1) in the KFSI-TEP electrolyte. XPS depth profile analysis shows that the improved cycling stability of the composite is closely related to the reversible dynamic evolutions and conversions of the sulfur-containing species in the solid electrolyte interphase (SEI) during the charge/discharge process. This dynamic reversible SEI concept may provide a new strategy for the design of superior electrodes for PIBs

    Elevation of circulating big endothelin-1: an independent prognostic factor for tumor recurrence and survival in patients with esophageal squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelin(ET) axis plays a key role in many tumor progression and metastasis via various mechanisms such as angiogenesis, mediating extracellular matrix degradation and inhibition of apoptosis. However, there is limited information regarding the clinical significance of plasma big ET-1 levels in esophageal cancer patients. Circulating plasma big ET-1 levels were measured in patients with esophageal squamous cell carcinoma(ESCC) to evaluate the value of ET-1 as a biomarker for predicting tumor recurrence and patients survival.</p> <p>Methods</p> <p>Preoperative plasma big ET-1 concentrations were measured by an enzyme linked immunosorbent assay(ELISA) in 108 ESCC patients before surgery, and then again at 1,2,3,10 and 30 days after curative radical resection for ESCC. The association between preoperative plasma big ET-1 levels and clinicopathological features, tumor recurrence and patient survival, and their changes following surgery were evaluated.</p> <p>Results</p> <p>The preoperative plasma big ET-1 levels in ESCC patients were significantly higher than those in controls. And there was a significant association between plasma big ET-1 levels and disease stage, as well as invasion depth of the tumor and lymph node status. Furthermore, plasma big ET-1 levels decreased significantly after radical resection of the primary tumor and patients with postoperative recurrence had significantly higher plasma big ET-1 levels than that of patients without recurrence. Finally, the survival rate of patients with higher plasma big ET-1 concentrations (>4.3 pg/ml) was significantly lower than that of patients with lower level (ā‰¤ 4.3 pg/ml). Multivariate regression analysis showed that plasma big ET-1 level is an independent prognostic factor for survival in patients with ESCC.</p> <p>Conclusion</p> <p>Plasma big ET-1 level in ESCC patients may reflect malignancy and predict tumor recurrence and patient survival. Therefore, the preoperative plasma big ET-1 levels may be a clinically useful biomarker for choice of multimodality therapy in ESCC patients.</p

    Synthesis and characterization of Znā‚ā‚‹ā‚“Mnā‚“O nanowires

    Get PDF
    Ā©2008 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?APPLAB/92/162102/1DOI:10.1063/1.2905274Mn doped ZnO nanowires (NWs) were fabricated by a one-step vapor-solid process at 500Ā°C. The doped Mn exists in the wurtzite lattice as substitutional atom without forming secondary phases. X-ray absorption near-edge structure reveals that the doped Mn atoms occupy the Zn sites, and they lead to an expansion in lattice constants. The I-V characteristic of a single Znā‚ā‚‹ā‚“Mnā‚“O NW shows a typical Ohmic contact with gold electrodes. The as-received NWs could be suitable for studying spintronics in one-dimensional diluted magnetic semiconductors
    • ā€¦
    corecore