1,914 research outputs found
Current Approaches to Improving the Value of Care: A Physician's Perspective
Evaluates the utility of judgment-based approaches to quality improvement -- pay-for-performance, public reporting, consumer-directed health plans, and tiering -- as ways to control costs. Recommends incentive- and accountability-based programs
Basin tillage for erosion control
A three-unit basin tillage machine which mechanically formed earthen dams in the tilled soil of bedded row middles was designed, constructed, and field tested. The objectives of the test were to evaluate the operation of the machine and to evaluate the effective-ness of diked bedded row middles in controlling soil loss by water erosion. Diked and undiked treatments were compared during six tests using slopes of 2 and 5 percent and slope lengths of 65 feet and 50 feet, respectively. A test consisted of subjecting two plots, one diked and the other undiked on the same ground slope and of the same slope length, to simulated rainfall of a given intensity. Rainfall application intensities ranged from 0.68 to 4.89 inches per hour. Runoff samples from each plot were manually collected at 4-minute intervals from type HS flumes installed at each plot outlet. Runoff rates were determined by measuring the depths of flow in the flumes, Sediment concentrations in the runoff water samples were determined by laboratory analyses and subsequently translated to mass of soil loss. The prototype machine operated relatively trouble-free under typical field conditions throughout the experiment. Diked plots, when compared to undiked plots, generally exhibited lower runoff rates, contained less sediment in the runoff water, and allowed more water to infiltrate the soil
Online choosability of graphs
We study several problems in graph coloring. In list coloring, each vertex has a set of available colors and must be assigned a color from this set so that adjacent vertices receive distinct colors; such a coloring is an -coloring, and we then say that is -colorable. Given a graph and a function , we say that is -choosable if is -colorable for any list assignment such that for all . When for all and is -choosable, we say that is -choosable. The least such that is -choosable is the choice number, denoted . We focus on an online version of this problem, which is modeled by the Lister/Painter game.
The game is played on a graph in which every vertex has a positive number of tokens. In each round, Lister marks a nonempty subset of uncolored vertices, removing one token at each marked vertex. Painter responds by selecting a subset of that forms an independent set in . A color distinct from those used on previous rounds is given to all vertices in . Lister wins by marking a vertex that has no tokens, and Painter wins by coloring all vertices in . When Painter has a winning strategy, we say that is -paintable. If for all and is -paintable, then we say that is -paintable. The least such that is -paintable is the paint number, denoted \pa(G).
In Chapter 2, we develop useful tools for studying the Lister/Painter game. We study the paintability of graph joins and of complete bipartite graphs. In particular, \pa(K_{k,r})\le k if and only if .
In Chapter 3, we study the Lister/Painter game with the added restriction that the proper coloring produced by Painter must also satisfy some property . The main result of Chapter 3 provides a general method to give a winning strategy for Painter when a strategy for the list coloring problem is already known. One example of a property is that of having an -dynamic coloring, where a proper coloring is -dynamic if each vertex has at least distinct colors in its neighborhood. For any graph and any , we give upper bounds on how many tokens are necessary for Painter to produce an -dynamic coloring of . The upper bounds are in terms of and the genus of a surface on which embeds.
In Chapter 4, we study a version of the Lister/Painter game in which Painter must assign colors to each vertex so that adjacent vertices receive disjoint color sets. We characterize the graphs in which tokens is sufficient to produce such a coloring. We strengthen Brooks' Theorem as well as Thomassen's result that planar graphs are 5-choosable.
In Chapter 5, we study sum-paintability. The sum-paint number of a graph , denoted \spa(G), is the least over all such that is -paintable. We prove the easy upper bound: \spa(G)\le|V(G)|+|E(G)|. When \spa(G)=|V(G)|+|E(G)|, we say that is sp-greedy. We determine the sum-paintability of generalized theta-graphs. The generalized theta-graph consists of two vertices joined by paths of lengths \VEC \ell1k. We conjecture that outerplanar graphs are sp-greedy and prove several partial results toward this conjecture.
In Chapter 6, we study what happens when Painter is allowed to allocate tokens as Lister marks vertices. The slow-coloring game is played by Lister and Painter on a graph . Lister marks a nonempty set of uncolored vertices and scores 1 point for each marked vertex. Painter colors all vertices in an independent subset of the marked vertices with a color distinct from those used previously in the game. The game ends when all vertices have been colored. The sum-color cost of a graph , denoted \scc(G), is the maximum score Lister can guarantee in the slow-coloring game on . We prove several general lower and upper bounds for \scc(G). In more detail, we study trees and prove sharp upper and lower bounds over all trees with vertices. We give a formula to determine \scc(G) exactly when . Separately, we prove that \scc(G)=\spa(G) if and only if is a disjoint union of cliques. Lastly, we give lower and upper bounds on \scc(K_{r,s})
Rhodium/phospholane-phosphite catalysts give unusually high regioselectivity in the enantioselective hydroformylation of vinyl arenes
Using the phospholane-phosphite ligand, BOBPHOS, almost perfect regioselectivities and high enantioselectivities (up to 92% ee) are observed in Rh catalysed enantioselective hydroformylation of vinyl arenes. This can be achieved under solvent-free conditions.PostprintPeer reviewe
Cybersecurity for Manufacturers: Securing the Digitized and Connected Factory
As manufacturing becomes increasingly digitized and data-driven, manufacturers will find themselves at serious risk. Although there has yet to be a major successful cyberattack on a U.S. manufacturing operation, threats continue to rise. The complexities of multi-organizational dependencies and data-management in modern supply chains mean that vulnerabilities are multiplying.
There is widespread agreement among manufacturers, government agencies, cybersecurity firms, and leading academic computer science departments that U.S. industrial firms are doing too little to address these looming challenges. Unfortunately, manufacturers in general do not see themselves to be at particular risk. This lack of recognition of the threat may represent the greatest risk of cybersecurity failure for manufacturers. Public and private stakeholders must act before a significant attack on U.S. manufacturers provides a wake-up call.
Cybersecurity for the manufacturing supply chain is a particularly serious need. Manufacturing supply chains are connected, integrated, and interdependent; security of the entire supply chain depends on security at the local factory level. Increasing digitization in manufacturing— especially with the rise of Digital Manufacturing, Smart Manufacturing, the Smart Factory, and Industry 4.0, combined with broader market trends such as the Internet of Things (IoT)— exponentially increases connectedness. At the same time, the diversity of manufacturers—from large, sophisticated corporations to small job shops—creates weakest-link vulnerabilities that can be addressed most effectively by public-private partnerships.
Experts consulted in the development of this report called for more holistic thinking in industrial cybersecurity: improvements to technologies, management practices, workforce training, and learning processes that span units and supply chains. Solving the emerging security challenges will require commitment to continuous improvement, as well as investments in research and development (R&D) and threat-awareness initiatives. This holistic thinking should be applied across interoperating units and supply chains.National Science Foundation, Grant No. 1552534https://deepblue.lib.umich.edu/bitstream/2027.42/145442/1/MForesight_CybersecurityReport_Web.pd
- …