1,895 research outputs found

    Unconventional Hall effect in pnictides from interband interactions

    Full text link
    We calculate the Hall transport in a multiband systems with a dominant interband interaction between carriers having electron and hole character. We show that this situation gives rise to an unconventional scenario, beyond the Boltzmann theory, where the quasiparticle currents dressed by vertex corrections acquire the character of the majority carriers. This leads to a larger (positive or negative) Hall coefficient than what expected on the basis of the carrier balance, with a marked temperature dependence. Our results explain the puzzling measurements in pnictides and they provide a more general framework for transport properties in multiband materials.Comment: 5 pages, 2 figure

    Transport through a molecular quantum dot in the polaron crossover regime

    Full text link
    We consider resonant transport through a molecular quantum dot coupled to a local vibration mode. Applying the non-equilibrium Green function technique in the polaron representation, we develop a non-perturbative scheme to calculate the electron spectral function of the molecule in the regime of intermediate electron-phonon coupling. With increasing tunneling coupling to the leads, correlations between polaron clouds become more important at relatively high temperature leading to a strong sharpening of the peak structure in the spectral function. The detection of such features in the current-voltage characteristics is briefly discussed

    Self-localized impurities embedded in a one dimensional Bose-Einstein condensate and their quantum fluctuations

    Full text link
    We consider the self-localization of neutral impurity atoms in a Bose-Einstein condensate in a 1D model. Within the strong coupling approach, we show that the self-localized state exhibits parametric soliton behavior. The corresponding stationary states are analogous to the solitons of non-linear optics and to the solitonic solutions of the Schroedinger-Newton equation (which appears in models that consider the connection between quantum mechanics and gravitation). In addition, we present a Bogoliubov-de-Gennes formalism to describe the quantum fluctuations around the product state of the strong coupling description. Our fluctuation calculations yield the excitation spectrum and reveal considerable corrections to the strong coupling description. The knowledge of the spectrum allows a spectroscopic detection of the impurity self-localization phenomenon.Comment: 7 pages, 5 figure

    Phase diagram for Coulomb-frustrated phase separation in systems with negative short-range compressibility

    Full text link
    Using numerical techniques and asymptotic expansions we obtain the phase diagram of a paradigmatic model of Coulomb frustrated phase separation in systems with negative short-range compressibility. The transition from the homogeneous phase to the inhomogeneous phase is generically first order in isotropic three-dimensional systems except for a critical point. Close to the critical point, inhomogeneities are predicted to form a BCC lattice with subsequent transitions to a triangular lattice of rods and a layered structure. Inclusion of a strong anisotropy allows for second- and first-order transition lines joined by a tricritical point.Comment: 4 pages, 3 figures. Improved figures and presentatio

    Suppression of electron relaxation and dephasing rates in quantum dots caused by external magnetic fields

    Full text link
    An external magnetic field has been applied in laterally coupled dots (QDs) and we have studied the QD properties related to charge decoherence. The significance of the applied magnetic field to the suppression of electron-phonon relaxation and dephasing rates has been explored. The coupled QDs have been studied by varing the magnetic field and the interdot distance as other system parameters. Our numerical results show that the electron scattering rates are strongly dependent on the applied external magnetic field and the details of the double QD configuration.Comment: 13 pages, 6 figure

    Exact Kohn-Sham eigenstates versus quasiparticles in simple models of strongly correlated electrons

    Get PDF
    We present analytic expressions for the exact density functional and Kohn-Sham Hamiltonian of simple tight-binding models of correlated electrons. These are the single- and double-site versions of the Anderson, Hubbard and spinless fermion models. The exact exchange and correlation potentials are fully non-local. The analytic expressions allow to compare the Kohn-Sham eigenstates of exact density functional theory with the many-body quasi-particle states of these correlated-electron systems. The exact Kohn-Sham spectrum describes correctly many of the non-trivial features of the many-body quasi-particle spectrum, as for example the precursors of the Kondo peak. However, we find that some pieces of the quasi-particle spectrum are missing because the many-body phase-space for electron and hole excitations is richer

    Zero-bias Anomaly of Tunneling into the Edge of a 2D Electron System

    Full text link
    We investigate the electron tunneling into the edge of a clean weakly interacting two-dimensional electron gas. It is shown that the corresponding differential conductance G(V)G(V) has a cusp at zero bias, and is characterized by a universal slope ∣dG/dV∣|dG/dV| at V=0V=0. This singularity originates from the electron scattering on the Friedel oscillation caused by the boundary of the system.Comment: 10 pages, uuencoded compressed Postscript file, to appear in Phys. Rev. B (Rapid Communications

    Single-particle spectral function for the classical one-component plasma

    Full text link
    The spectral function for an electron one-component plasma is calculated self-consistently using the GW0 approximation for the single-particle self-energy. In this way, correlation effects which go beyond the mean-field description of the plasma are contained, i.e. the collisional damping of single-particle states, the dynamical screening of the interaction and the appearance of collective plasma modes. Secondly, a novel non-perturbative analytic solution for the on-shell GW0 self-energy as a function of momentum is presented. It reproduces the numerical data for the spectral function with a relative error of less than 10% in the regime where the Debye screening parameter is smaller than the inverse Bohr radius, kappa<1/a_B. In the limit of low density, the non-perturbative self-energy behaves as n^(1/4), whereas a perturbation expansion leads to the unphysical result of a density independent self-energy [W. Fennel and H. P. Wilfer, Ann. Phys. Lpz._32_, 265 (1974)]. The derived expression will greatly facilitate the calculation of observables in correlated plasmas (transport properties, equation of state) that need the spectral function as an input quantity. This is demonstrated for the shift of the chemical potential, which is computed from the analytical formulae and compared to the GW0-result. At a plasma temperature of 100 eV and densities below 10^21 cm^-3, both approaches deviate less than 10% from each other.Comment: 14 pages, 9 figures accepted for publication in Phys. Rev. E v2: added section V (application of presented formalism to chemical potential of the OCP

    Disorder-Induced First Order Transition and Curie Temperature Lowering in Ferromagnatic Manganites

    Full text link
    We study the effect that size disorder in the cations surrounding manganese ions has on the magnetic properties of manganites. This disorder is mimic with a proper distribution of spatially disordered Manganese energies. Both, the Curie temperature and the order of the transition are strongly affected by disorder. For moderate disorder the Curie temperature decreases linearly with the the variance of the distribution of the manganese site energies, and for a disorder comparable to that present in real materials the transition becomes first order. Our results provide a theoretical framework to understand disorder effects on the magnetic behavior of manganites.Comment: 4 pages, three figures include
    • …
    corecore