36 research outputs found

    Loss of Cellular K+ Mimics Ribotoxic Stress

    Get PDF
    The tumor promoter palytoxin has been found to activate the stress-activated protein kinase/c-Jun NH2-terminal kinase 1 (SAPK/JNK1), and it also potentiates, as demonstrated here, the p38/HOG1 mitogen-activated protein kinase and the upstream activator of SAPK/JNK1, SEK1/MKK4. In search of possible mechanisms for both the cytotoxicity and the activation of stress kinases by palytoxin, we found that palytoxin is a potent inhibitor of cellular protein synthesis. The inhibition of translation by palytoxin does not result from its direct binding to the translational apparatus. We have previously demonstrated that ribotoxic stressors (Iordanov, M. S., Pribnow, D., Magun, J. L., Dinh, T.-H., Pearson, J. A., Chen, S. L.-Y., and Magun, B. E. (1997) Mol. Cell. Biol. 17, 3373–3381) signal the activation of SAPK/JNK1 by binding to or covalently modifying 28 S rRNA in ribosomes that are active at the time of exposure to the stressor. Palytoxin acted as a ribotoxic stressor, inasmuch as it required actively translating ribosomes at the time of exposure to activate SAPK/JNK1. Palytoxin has been shown to augment ion fluxes by binding to the Na+/K+-ATPase in the plasma membrane of cells. To determine whether altered fluxes of either Na+ or K+ could be responsible for the effects of palytoxin on translation and on activation of SAPK/JNK1, cells were exposed to palytoxin in modified culture medium in which a major portion of the Na+ was replaced by either K+ or by choline+. The substitution of Na+ by K+ strongly inhibited the ability of palytoxin both to inhibit protein translation and to activate SAPK/JNK1, whereas the substitution of Na+ by choline+ did not. These results suggest that palytoxin-induced efflux of cellular K+ mimics ribotoxic stress by provoking both translational inhibition and activation of protein kinases associated with cellular defense against stress

    Different Mechanisms of c-Jun NH2-terminal Kinase-1 (JNK1) Activation by Ultraviolet-B Radiation and by Oxidative Stressors

    Get PDF
    Irradiation of mammalian cells with ultraviolet-B radiation (UV-B) triggers the activation of a group of stress-activated protein kinases known as c-Jun NH2-terminal kinases (JNKs). UV-B activates JNKs via UV-B-induced ribotoxic stress. Because oxidative stress also activates JNKs, we have addressed the question of whether the ribotoxic and the oxidative stress responses are mechanistically similar. The pro-oxidants sodium arsenite, cadmium chloride, and hydrogen peroxide activated JNK1 with slow kinetics, whereas UV-B potentiated the activity of JNK1 rapidly.N-acetyl cysteine (a scavenger of reactive oxygen intermediates) abolished the ability of all oxidative stressors tested to activate JNK1, but failed to affect the activation of JNK1 by UV-B or by another ribotoxic stressor, the antibiotic anisomycin. In contrast, emetine, an inhibitor of the ribotoxic stress response, was unable to inhibit the activation of JNK1 by oxidative stressors. Although UV-A and long wavelength UV-B are the spectral components of the ultraviolet solar radiation that cause significant oxidative damage to macromolecules, the use of a filter to eliminate the radiation output from wavelengths below 310 nm abolished the activation of JNK1 by UV. Our results are consistent with the notion that UV-B and oxidative stressors trigger the activation of JNK1 through different signal transduction pathways

    ZAK is required for doxorubicin, a novel ribotoxic stressor, to induce SAPK activation and apoptosis in HaCaT cells

    Get PDF
    Doxorubicin is an anthracycline drug that is one of the most effective and widely used anticancer agents for the treatment of both hematologic and solid tumors. The stress-activated protein kinases (SAPKs) are frequently activated by a number of cancer chemotherapeutics. When phosphorylated, the SAPKs initiate a cascade that leads to the production of proinflammatory cytokines. Some inhibitors of protein synthesis, known as ribotoxic stressors, coordinately activate SAPKs and lead to apoptotic cell death. We demonstrate that doxorubicin effectively inhibits protein synthesis, activates SAPKs, and causes apoptosis. Ribotoxic stressors share a common mechanism in that they require ZAK, an upstream MAP3K, to activate the pro-apoptotic and proinflammatory signaling pathways that lie downstream of SAPKs. By employing siRNA mediated knockdown of ZAK or administration of sorafenib and nilotinib, kinase inhibitors that have a high affinity for ZAK, we provide evidence that ZAK is required for doxorubicin-induced proinflammatory and apoptotic responses in HaCaT cells, a pseudo-normal keratinocyte cell line, but not in HeLa cells, a cancerous cell line. ZAK has two different isoforms, ZAK-α (91 kDa) and ZAK-β (51 kDa). HaCaT or HeLa cells treated with doxorubicin and immunoblotted for ZAK displayed a progressive decrease in the ZAK-α band and the appearance of ZAK-β bands of larger size. Abrogation of these changes after exposure of cells to sorafenib and nilotinib suggests that these alterations occur following stimulation of ZAK. We suggest that ZAK inhibitors such as sorafenib or nilotinib may be effective when combined with doxorubicin to treat cancer patients

    Shiga toxin 2-induced intestinal pathology in infant rabbits is A-subunit dependent and responsive to the tyrosine kinase and potential ZAK inhibitor imatinib

    Get PDF
    Shiga toxin producing Escherichia coli (STEC) are a major cause of food-borne illness worldwide. However, a consensus regarding the role Shiga toxins play in the onset of diarrhea and hemorrhagic colitis (HC) is lacking. One of the obstacles to understanding the role of Shiga toxins to STEC-mediated intestinal pathology is a deficit in small animal models that perfectly mimic human disease. Infant rabbits have been previously used to study STEC and/or Shiga toxin-mediated intestinal inflammation and diarrhea. We demonstrate using infant rabbits that Shiga toxin-mediated intestinal damage requires A-subunit activity, and like the human colon, that of the infant rabbit expresses the Shiga toxin receptor Gb3. We also demonstrate that Shiga toxin treatment of the infant rabbit results in apoptosis and activation of p38 within colonic tissues. Finally we demonstrate that the infant rabbit model may be used to test candidate therapeutics against Shiga toxin-mediated intestinal damage. While the p38 inhibitor SB203580 and the ZAK inhibitor DHP-2 were ineffective at preventing Shiga toxin-mediated damage to the colon, pretreatment of infant rabbits with the drug imatinib resulted in a decrease of Shiga toxin-mediated heterophil infiltration of the colon. Therefore, we propose that this model may be useful in elucidating mechanisms by which Shiga toxins could contribute to intestinal damage in the human

    Suppression of Ribosomal Function Triggers Innate Immune Signaling through Activation of the NLRP3 Inflammasome

    Get PDF
    Some inflammatory stimuli trigger activation of the NLRP3 inflammasome by inducing efflux of cellular potassium. Loss of cellular potassium is known to potently suppress protein synthesis, leading us to test whether the inhibition of protein synthesis itself serves as an activating signal for the NLRP3 inflammasome. Murine bone marrow-derived macrophages, either primed by LPS or unprimed, were exposed to a panel of inhibitors of ribosomal function: ricin, cycloheximide, puromycin, pactamycin, and anisomycin. Macrophages were also exposed to nigericin, ATP, monosodium urate (MSU), and poly I:C. Synthesis of pro-IL-ß and release of IL-1ß from cells in response to these agents was detected by immunoblotting and ELISA. Release of intracellular potassium was measured by mass spectrometry. Inhibition of translation by each of the tested translation inhibitors led to processing of IL-1ß, which was released from cells. Processing and release of IL-1ß was reduced or absent from cells deficient in NLRP3, ASC, or caspase-1, demonstrating the role of the NLRP3 inflammasome. Despite the inability of these inhibitors to trigger efflux of intracellular potassium, the addition of high extracellular potassium suppressed activation of the NLRP3 inflammasome. MSU and double-stranded RNA, which are known to activate the NLRP3 inflammasome, also substantially inhibited protein translation, supporting a close association between inhibition of translation and inflammasome activation. These data demonstrate that translational inhibition itself constitutes a heretofore-unrecognized mechanism underlying IL-1ß dependent inflammatory signaling and that other physical, chemical, or pathogen-associated agents that impair translation may lead to IL-1ß-dependent inflammation through activation of the NLRP3 inflammasome. For agents that inhibit translation through decreased cellular potassium, the application of high extracellular potassium restores protein translation and suppresses activation of the NLRP inflammasome. For agents that inhibit translation through mechanisms that do not involve loss of potassium, high extracellular potassium suppresses IL-1ß processing through a mechanism that remains undefined

    Different Mechanisms of c-Jun NH2-terminal Kinase-1 (JNK1) Activation by Ultraviolet-B Radiation and by Oxidative Stressors

    Get PDF
    Irradiation of mammalian cells with ultraviolet-B radiation (UV-B) triggers the activation of a group of stress-activated protein kinases known as c-Jun NH2-terminal kinases (JNKs). UV-B activates JNKs via UV-B-induced ribotoxic stress. Because oxidative stress also activates JNKs, we have addressed the question of whether the ribotoxic and the oxidative stress responses are mechanistically similar. The pro-oxidants sodium arsenite, cadmium chloride, and hydrogen peroxide activated JNK1 with slow kinetics, whereas UV-B potentiated the activity of JNK1 rapidly.N-acetyl cysteine (a scavenger of reactive oxygen intermediates) abolished the ability of all oxidative stressors tested to activate JNK1, but failed to affect the activation of JNK1 by UV-B or by another ribotoxic stressor, the antibiotic anisomycin. In contrast, emetine, an inhibitor of the ribotoxic stress response, was unable to inhibit the activation of JNK1 by oxidative stressors. Although UV-A and long wavelength UV-B are the spectral components of the ultraviolet solar radiation that cause significant oxidative damage to macromolecules, the use of a filter to eliminate the radiation output from wavelengths below 310 nm abolished the activation of JNK1 by UV. Our results are consistent with the notion that UV-B and oxidative stressors trigger the activation of JNK1 through different signal transduction pathways

    Ultraviolet Radiation Triggers the Ribotoxic Stress Response in Mammalian Cells

    Get PDF
    The ribotoxic stress response, which is conserved between prokaryotes and eukaryotes, is a cellular reaction to cytotoxic interference with the function of the 3′-end of the large (23 S/28 S) ribosomal RNA. The 3′-end of the large rRNA is directly involved in the three sequential steps of translational elongation: the aminoacyl-tRNA binding, the peptidyl transfer, and the ribosomal translocation. In mammalian cells, the ribotoxic stress response involves activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase and the p38 mitogen-activated protein kinase and transcriptional induction of immediate early genes such as c-fos and c-jun. Active ribosomes are essential mediators of the ribotoxic stress response. We demonstrate here that the transcriptional response of mammalian cells to ultraviolet radiation (UV response) displays the characteristics of a ribotoxic stress response, inasmuch as (i) the activation of stress kinases and gene expression in response to UV requires the presence of active ribosomes at the moment of irradiation; (ii) UV irradiation inhibits protein synthesis; and (iii) irradiation of cells with UV causes specific damage to the 3′-end of the 28 S rRNA. In contrast, the activation of the stress kinases by hyperosmolarity, by the DNA-cross-linking agent diepoxybutane, or by growth factors and cytokines does not depend on the presence of active ribosomes. Our results identify UV as a potential ribotoxic stressor and support the notion that some of the cellular signaling cascades in response to UV might be generated in the ribosome, possibly triggered by damage to rRNA

    Inhibition of protein synthesis by dsRNA and inhibition of IL-1ß processing by MG-132.

    No full text
    <p>A) BMDM were treated with or without 4 h of LPS priming, as indicated. Cells were then rinsed in fresh medium and treated with either LipofectAMINE 2000 or LipofectAMINE 2000-poly I:C complex for 4 h, in the presence or absence of 30 µM MG-132, as indicated. Cell lysates (cell) or media (medium) samples were subjected to immunoblotting with the antibodies indicated. B) BMDM were treated with either LipofectAMINE 2000 alone or with LipofectAMINE 2000-dsRNA complex for the times indicated. Fifteen minutes before each time-point, 1 µCi of [<sup>3</sup>H]-leucine was added, and leucine incorporation was terminated by trichloroacetic acid. Each treatment was conducted in triplicate wells, and values are shown as mean ± S.D. Percent incorporation of [<sup>3</sup>H]-leucine at each point was calculated as the [<sup>3</sup>H]-leucine incorporated into cells exposed to LipofectAMINE 2000-dsRNA complex/[<sup>3</sup>H]-leucine incorporated into cells exposed to LipofectAMINE 2000 alone×100.</p
    corecore